
University of Beira Interior
Department of Computer Science

No 52 - 2014: RTEMS - Real-Time Executive for
Multiprocessor Systems

Authored by:

André Marques

Supervisor:

Dr. Paul Andrew Crocker, Ph.D.

July 2014

Acknowledgments

I would like to express my deep gratitude to Dr. Paul Crocker, my supervisor, for
his patience, enthusiastic encouragement and support whenever requested. His
guidance and incentive were truly invaluable and I am honored to have had the
opportunity of working with him.

I would also like to extend my thanks to the SEGAL laboratory for lending a
Raspberry Pi during the development of this project, without which this project
would not be possible.

Finally, I want to thank my parents and closest family for their support and
encouragement throughout my studies.

i

Contents

Contents iii

List of Figures vii

Acronyms xi

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objective . 2
1.4 Document Outline . 2

2 Real-Time Executive for Multiprocessor Systems 5
2.1 Real Time Operating System (RTOS) 5
2.2 Embedded Systems . 6
2.3 Applications . 7
2.4 Real-Time Executive for Multiprocessor Systems (RTEMS) in Por-

tugal . 8
2.5 Features . 8
2.6 System Architecture . 9

2.6.1 Internal Architecture . 9
2.6.2 Application Architecture 11

2.7 Directory structure . 12
2.8 Compiling the Source Code . 13
2.9 Conclusions . 13

3 Rename Portable Operating System Interface (POSIX) Function Unit
Test 15
3.1 The RTEMS Test Suite . 15
3.2 Portable Operating System Interface 16

3.2.1 POSIX.1-2008 . 17

iii

iv CONTENTS

3.3 The Rename Specification Test Case 17
3.3.1 The Test Case . 17
3.3.2 Test Case Unchecked Cases 20

3.4 Results . 21
3.5 Conclusions . 21

4 Device Driver Development 23
4.1 Device Drivers . 23
4.2 Kernel and User Space Drivers 24
4.3 Concurrency and Compiler Optimization 25
4.4 Major and Minor Numbers . 25
4.5 Driver Operations . 26
4.6 Time . 27
4.7 Hardware Communication . 27
4.8 Interrupt Handling . 28
4.9 Memory . 29

4.9.1 Memory Mapping and Direct Memory Access 29
4.10 Block Devices . 30
4.11 File Systems . 30
4.12 Block Device Drivers . 31
4.13 Conclusions . 31

5 Raspberry Pi 33
5.1 Hardware Features . 33

5.1.1 System on a Chip . 33
5.1.2 External Mass Media Controller Interface 34

5.2 Raspberry Pi and RTEMS . 34
5.3 Booting the Raspberry Pi . 35
5.4 Communication with the Raspberry Pi 35
5.5 Memory Registers . 36
5.6 Conclusions . 37

6 Secure Digital Protocol 39
6.1 The Secure Digital Standard . 39

6.1.1 The Secure Digital Memory Card 39
6.1.2 The Secure Digital Input Output Card 41
6.1.3 Operating Modes . 41

6.2 The Secure Digital (SD) Bus Protocol 42
6.2.1 SD and Application Specific Commands 42
6.2.2 SD Card Registers . 43

6.3 The SD Host Controller Protocol 43

CONTENTS v

6.3.1 SD Card Detection . 44
6.3.2 SD Clock Control . 45
6.3.3 SD Card Initialization and Identification 46
6.3.4 SD Command Issue . 47
6.3.5 Finalize SD Command 48
6.3.6 Transferring Data . 48

6.4 Conclusions . 50

7 Secure Digital Device Driver 57
7.1 Implementing the Secure Digital Protocol 57

7.1.1 card_detection . 57
7.1.2 sd_get_base_clock_hz 58
7.1.3 sd_get_clock_divider 58
7.1.4 sd_handle_interrupts 58
7.1.5 sd_issue_command 58
7.1.6 sd_issue_command_int 59
7.1.7 sd_card_init . 59
7.1.8 disk_ioctl . 59
7.1.9 sd_ensure_data_mode 60
7.1.10 sd_do_data_command 60
7.1.11 SD Input/Output (I/O) directives 60

7.2 The Device Driver Table . 61
7.3 Testing the Device Driver . 61
7.4 Conclusions . 62

8 Conclusions and Future Work 65
8.1 Future Work . 65

A Rename POSIX test results 67

Bibliography 77

List of Figures

2.1 RTEMS architecture [10]. 9
2.2 RTEMS classic Application Programming Interface (API) layered

architecture [18]. 10
2.3 RTEMS application architecture [18]. 12

6.1 SD Card Detection Sequence [6]. 45
6.2 SD Clock Supply Sequence [6]. 46
6.3 SD card initialization and identification sequence (part 1) [6]. . . . 51
6.4 SD card initialization and identification sequence (part 2) [6]. . . . 52
6.5 SD command issue sequence [6]. 53
6.6 Finalize SD command sequence [6]. 54
6.7 Finalize SD command sequence [6]. 55

7.1 The test application running on the Raspberry Pi. 62
7.2 The SD card state after the test, read on another computer. 63

vii

Listings

3.1 Rename directive prototype. 17
7.1 Card detection function prototype. 57
7.2 SD get base clock function prototype. 58
7.3 Get clock divider function prototype. 58
7.4 Interrupt handling function prototype. 58
7.5 SD issue command function prototype. 58
7.6 SD issue command intermediary function prototype. 59
7.7 SD card initialization function prototype. 59
7.8 Card I/O function prototype. 59
7.9 SD card data mode check function prototype. 60
7.10 Data transfer setup function prototype. 60
7.11 SD card I/O function prototypes. 60
7.12 Device driver table initialization function prototype. 61
A.1 Rename unit test results. 67

ix

Acronyms

RTEMS Real-Time Executive for Multiprocessor Systems

RTOS Real Time Operating System

OAR On-Line Applications Research

API Application Programming Interface

NASA National Aeronautics and Space Administration

ESA European Space Agency

POSIX Portable Operating System Interface

SMP Symmetric MultiProcessing

I/O Input/Output

IOCTL Input/Output Control

DMA Direct Memory Access

IMFS In Memory File System

CPU Central Processing Unit

USB Universal Serial Bus

SOC System on a Chip

GPU Graphics Processing Unit

RAM Random-access memory

UART Universal Asynchronous Receiver/Transmitter

EMMC External Mass Media Controller

xi

xii Acronyms

FAT File Allocation Table

MMU Memory Management Unit

DSB Data Synchronization Barrier

DMB Data Memory Barrier

ISB Instruction Synchronization Barrier

BSP Board Support Package

SD Secure Digital

SPI Serial Peripheral Interface

SDSC Secure Digital Standard Capacity

SDHC Secure Digital High Capacity

SDXC Secure Digital Extended Capacity

SDIO Secure Digital Input Output

MMC Multi Media Card

CRC Cyclic Redundancy Code

OCR Operating Condition Register

CID Card IDentification

CSD Card Specific Data

RCA Relative Card Address

SCR SD card Configuration Register

Chapter 1

Introduction

In the last few years a number of small embedded computers have appeared on the
market to become wildly popular in both the educational and scientific/engineer-
ing communities. One of those systems is the Raspberry Pi, which at this point
lacks a proper real-time operating system that can be used with it.

Each embedded system is unique because they are, by nature, specialized sys-
tems that can interact with the real world. An operating system must then be able
to communicate with the system’s connected peripherals for it to be of any use,
and this is done through a device driver.

1.1 Context

RTEMS is an open source full featured RTOS that supports a variety of open
API and interface standards, targeted for embedded systems. The RTEMS project
is managed by the On-Line Applications Research (OAR) corporation with the
help of the RTEMS user community and serves as the base operating system for
many applications with real-time needs: space, defense, medical, industry, avia-
tion, and more. It is the main open source RTOS used by National Aeronautics
and Space Administration (NASA) and European Space Agency (ESA) for their
space missions, and Portugal has the only RTEMS centre outside the United States
of America, which is managed by Edisoft S.A..

The RTEMS operating system is mainly used with very expensive hardware,
so it can be hard to build and maintain a community around the project if only a
few people can run it. In fact, most applications using RTEMS are separate and
closed projects, which usually do not contribute to the main RTEMS project. For
that reason, one of the RTEMS project goals is to be as user/developer friendly

1

2 Introduction

as possible. RTEMS has been ported to many hardware platforms and supports a
multitude of processor architectures and hardware emulators, but has missed the
recent popular hardware targets, such as the Raspberry Pi.

1.2 Motivation
During my undergraduate studies I feel that I have been introduced (even if briefly)
to all aspects of computing from a software point of view, but my main interest
within computing always was operating systems. However, during the course I
did not had the chance of working with a RTOS or an embedded system, and that
motivated me to work in that domain for my graduation project.

1.3 Objective
This project introduces RTEMS, a real-time operating system that is currently
being ported to the Raspberry Pi, and proposes a device driver for its SD memory
card interface, which allows RTEMS to store data persistently on a common SD
memory card. It also describes a test case for the RTEMS POSIX API that has
already been included in the official RTEMS tree.

1.4 Document Outline
In order to describe the work that was developed during the project, this document
is structured as follows:

1. Chapter 1 – Introduction – introduces the project and its objectives;

2. Chapter 2 – Real-Time Executive for Multiprocessor Systems – intro-
duces the Real-Time Executive for Multiprocessor Systems (RTEMS) oper-
ating system, RTOS and embedded systems;

3. Chapter 3 – Rename POSIX Function Unit Test – introduces the RTEMS
testing suite, the POSIX specification and describes the unit test developed
during this project for the POSIX function rename;

4. Chapter 4 – Device Driver Development – introduces the concept of de-
vice drivers, starting from what a device is to the underlying concepts of
developing a device driver;

5. Chapter 5 – Raspberry Pi – introduces the Raspberry Pi platform;

1.4 Document Outline 3

6. Chapter 6 – Secure Digital Protocol – introduces and describes the SD
standard and protocol;

7. Chapter 7 – Secure Digital Device Driver – describes the device driver
developed for SD memory cards under RTEMS and the Raspberry Pi;

8. Chapter 8 – Conclusions and Future Work – presents the project conclu-
sions and some ideas for future work on this project.

Chapter 2

Real-Time Executive for
Multiprocessor Systems

Real-Time Executive for Multiprocessor Systems (RTEMS) is a real-time (refer to
section 2.1) executive 1 targeted towards embedded systems (refer to section 2.2).

It started as an United States Army project in 1988 developed by the OAR
Corporation 2 and is now a community-driven open-source project, led by a steer-
ing committee with representatives not only from OAR but also from the RTEMS
community.

This chapter will introduce the RTEMS operating system, focusing on its the
relevant features to this project. It will define what a RTOS and an embedded
system is, describe some RTEMS applications and features as well as the RTEMS
internal and application architectures. At the end of the chapter there is a brief
look at the RTEMS development environment, namely at its directory structure
and how the RTEMS source code is compiled.

2.1 Real Time Operating System (RTOS)
A Real Time Operating System (RTOS) is a computer system that operates within
strict time requirements for the execution of certain tasks.The computing results
should not only be correct, but also need to be produced within strict time con-
straints [22].

These systems may also be mission or safety-critical, which work under the
assumption that any failure may have catastrophic consequences, such as:

1May also be called kernel or operating system.
2At the time RTEMS meant Real-Time Executive for Missile Systems.

5

6 Real-Time Executive for Multiprocessor Systems

• Death or damage to people;

• Property damage;

• Financial losses.

Each task on a RTOS is given a deadline by which the task should have com-
pleted, and the system may or may not permit a task deadline to be missed.

A real-time system can be classified as:

• Hard real-time - The system must not miss any deadline. An early or late
answer is a wrong answer;

• Soft real-time - The system may miss one or several deadlines, but at the
cost of performance loss, missed user opportunity or some other penaliza-
tion.

Hard real-time systems are found in safety-critical systems, such as:

• Weapon systems;

• Pacemakers;

• Anti-lock car brake systems.

Where soft-real time systems, which only provide that a critical real-time task
will receive priority over other tasks until it finishes, can be found, for example,
in real-time multimedia servers.

RTOS are usually embedded in specialized systems that can interact with the
real world to provide real-time capabilities.

2.2 Embedded Systems
An embedded system can be defined as any computer system that is built into a
larger system [17] [22]. Depending on the system they may require different lev-
els of user interaction and knowledge.

Embedded systems are used, for example, on:

• Cameras;

• MP3 players;

2.3 Applications 7

• Cellular telephones.

As for RTEMS, it runs mainly in two sub-categories of embedded systems:

• Deeply embedded systems - Systems that work with little or no operator
intervention and that should, ideally, go completely invisible and unnoticed
by the user (for instance, an anti-lock brake system on a car);

• Real-time embedded systems - Systems that are driven by and must respond
to real world events, which at the same time must adhere to rigorous envi-
ronment requirements. RTEMS acts as the provider of the real-time capa-
bilities to the system.

In the anti-lock brake system on a car example, each wheel has a sensor de-
tecting how much sliding and traction are occurring, and each sensor continually
sends its data to the system controller. Based on the received information, the
controller orders the braking mechanism in each wheel how much braking pres-
sure should be applied. All this process goes completely unnoticed by the car
driver [22].

Deeply embedded systems are also used in space, where direct user interven-
tion is impossible. This type of system is usually also real-time, so it comes as no
surprise that one of the major applications of RTEMS is on space systems.

2.3 Applications
The RTEMS operating system has applications in a variety of domains, such as
communications, medical, space and aviation, scientific, robotics, military and
industrial. Some specific applications of RTEMS include:

• MITRE Centaur Robot - A modified off-road vehicle designed to follow
other vehicles, using a PowerPc embedded board running RTEMS to control
all the real-time input. It has many potential applications in the military,
such as supply convoys;

• EPICS (Experimental Physics and Industrial Control System) is a set of
software tools to provide a software infrastructure to control and operate
devices such as particle accelerators, lasers and major telescopes. Here
RTEMS is used, for example, to control the I/O servers of a laser beam;

• ESA Galileo - RTEMS is also running on the ESA satellites that will com-
pose the european GPS (Global Positioning System) - Galileo.

8 Real-Time Executive for Multiprocessor Systems

2.4 RTEMS in Portugal
In Portugal, Edisoft is the main company using RTEMS. Edisoft works with de-
fence and security systems as well as aeronautics and space systems, some of
which using an in-house version of RTEMS.

Edisoft has also reached an agreement with OAR to create the RTEMS Centre,
a project sponsored by ESA under the scope of the ESA-Portugal Task Force
Protocol [2] [10]. The RTEMS Centre is a support and maintenance center with
two main purposes:

• Design, development, maintenance and integration of tools for the RTEMS
components that are of interest to ESA;

• Creation and maintenance of technical competences and support site for
RTEMS in Europe.

2.5 Features
RTEMS provides a high performance environment to a wide array of applications,
as shown in section 2.3, through a comprehensive set of features [18].

Some of those features include:

• Multitasking capabilities;

• Event-driven, priority-based, preemptive scheduling (with optional rate mono-
tonic scheduling);

• Inter-task communication and synchronization;

• Priority inheritance;

• Responsive interrupt management;

• Dynamic memory allocation;

• High level of user configurability.

Over the next sections it will be described how some of these features are
organized and structured, to ensure maximum portability across the many different
hardware architectures supported by RTEMS.

2.6 System Architecture 9

2.6 System Architecture

This section will describe how RTEMS components are structured for use by a
real-time application, as well as the application architecture.

2.6.1 Internal Architecture

RTEMS has, conceptually, three layers: hardware support, kernel and the APIs [10].
The hardware support and kernel layers compose the system itself, while the APIs
are used to develop system applications by an end user. A detailed scheme of the
system architecture can be seen in figure 2.1.

Figure 2.1: RTEMS architecture [10].

The hardware support layer contains the processor and board dependent logic,
which permits to separate (at a logical level) the hardware from the software. The
executive interface presented to an application is formed by grouping the systems
directives into logical sets called resource managers. The system functions used
by all resource managers are provided by the executive core (the kernel layer),
which include scheduling, dispatching and object management.

Apart from the kernel directives, others are available through the available
APIs:

10 Real-Time Executive for Multiprocessor Systems

• Classic API - Is the original RTEMS API which is based on the Real Time
Executive Interface Definition (RTEID) RTOS standard (see figure 2.2);

• POSIX 1003.1b API - Implements the real-time extensions of the POSIX
1003.1 standard;

• Industrial The Real-time Operating system Nucleus (ITRON) API - Imple-
ments the Japanese open standard for RTOS.

In figure 2.2 the kernel layer corresponds to the RTEMS Core, while the sur-
rounding resource managers build up to create the classic API.

Figure 2.2: RTEMS classic API layered architecture [18].

The classic API resource managers:

• Initialization - Responsible for initiating and shutting down RTEMS;

• Task - Provides a set of directives to create, delete and administer RTEMS
tasks;

• Interrupt - Manages the externally (to the system) generated interrupts, al-
lowing quick interrupt response times by providing the ability to alter task
execution through preemption;

• Clock - Provides time support to the system, including date and time as well
as clock ticks;

2.6 System Architecture 11

• Timer - Allows the creation of timers that may be used to schedule/fire
certain tasks after a given period of time;

• Semaphore - Provides synchronization mechanisms, such as counting semaphores
or mutual exclusion;

• Message - Provides message queues that can be used for inter-task commu-
nication and synchronization;

• Event - Allows a task to generate/receive a notification to/from another task
when a certain condition is met;

• Signal - Provides asynchronous communication capabilities;

• Partition - Dynamically allocates memory to create fixed-size memory par-
titions;

• Region - Dynamically allocates memory to create variable-sized memory
partitions;

• I/O - Provides a mechanism to access and manage device drivers;

• Fatal error - Processes all fatal and irrecoverable errors, so the system has a
chance of recovering;

• Rate monotonic - Provides tasks that are to be executed periodically;

• Multiprocessing - Allows the creation of global objects (tasks, queues, events,
signals, semaphores and memory blocks) on multi-processor systems, that
can run on a processor and accessed from another. RTEMS can determine
where the object is running and performs the required actions to access it,
allowing the entire system (both hardware and software) to be viewed logi-
cally as a single system.

The interface between the RTEMS system and an application for a specific
hardware platform is a Board Support Package (BSP), which comprises the hard-
ware (Central Processing Unit (CPU), board or peripherals) dependent code and
links it with the RTEMS executive.

2.6.2 Application Architecture
RTEMS is designed to act as a bridge between the application code and the hard-
ware. As shown in figure 2.3, RTEMS solve most hardware dependencies through
its device drivers, and provides a general mechanism (a Standard Application

12 Real-Time Executive for Multiprocessor Systems

Figure 2.3: RTEMS application architecture [18].

Component) to the application code to access the hardware. This allows code
to be reused across different real-time projects.

One example of a standard application component is the RTEMS I/O interface
manager, which provides to a user application all the necessary system directives
and device drivers for a wide range of I/O capable hardware, leaving only the
application dependent software to be developed.

2.7 Directory structure
The RTEMS system is distributed in the form of source code, however no signif-
icant support tools are provided [19], for instance cross compilers and all the as-
sociated tool chain for a particular architecture must be obtained separately. The
source code is distributed and organized across several directories based upon
functionality as well as hardware dependencies. This minimizes non-portable
code and makes the process of adding support to a new CPU or target architecture
very simple and conceptually easy to understand.

The RTEMS directory structure is designed to:

• Promote the development of modular components;

• Isolate processor and target dependent code, while at the same time allowing
common code to be reused and shared across multiple processor and target
boards;

2.8 Compiling the Source Code 13

• Allow localized compiling, so different users may be compiling different
parts of the system for different target hardware. This is possible because
RTEMS is compiled outside the source code tree, which by itself is different
to most undergraduate software projects.

Taking RTEMS-ROOT as the root directory of the RTEMS source code, the
following directories are of special interest to this project:

• RTEMS-ROOT/c/src/lib/libbsp/arm/raspberrypi - This directory contains
the Raspberry Pi BSP code, and where the SD card driver will reside;

• RTEMS-ROOT/cpukit/libblock - Contains the support code for block de-
vices, including I/O primitives. The libblock code is used by the Raspberry
Pi SD card driver to interface with the card file system and the I/O primitives
to allow the driver to be easily accessed by a RTEMS application;

• RTEMS-ROOT/testsuites/fstests - The RTEMS file system test case direc-
tory, which contains the test case created under this project and explained
in detail in chapter 3.

2.8 Compiling the Source Code
RTEMS uses chains of makefiles which are compiled using the GNU automake
and GNU autoconf tools. Each section of the source tree contains a configure.ac
file that takes care of any necessary dependencies, such as header files or if a
compiler is available. Each directory on the source tree has a Makefile.am file that
is used with the section configure.ac by automake to generate a Makefile.in, the
real makefile file that is used to compile all the code contained in that directory.
This allows the developer to compile only the needed portions of the system at
any given time.

2.9 Conclusions
This chapter introduced the RTEMS system focusing on its features and applica-
tions, giving a brief notion of the development environment, and of what a RTOS
and an embedded system is. These concepts will be useful for the next chapter,
which will focus on the RTEMS test framework and on a new test case for the
POSIX API.

Chapter 3

Rename POSIX Function Unit Test

Just like any complex and dynamic software project, RTEMS has many outstand-
ing development issues and ongoing projects. One such ongoing projects is the
increase of the software test coverage through as many contributions as possible.
Since one of this project goals was to be relevant to the RTEMS project and also to
get to know and to become known amongst the RTEMS community of users and
developers, a test case was chosen as the first contribution. The RTEMS POSIX
API implementation of the rename directive had no previous test case to check
its conformance to any POSIX specification, so a test case was made to check
the conformance with POSIX.1-2008 [14], the latest POSIX specification for core
services.

This chapter will introduce the RTEMS test suite and briefly the POSIX stan-
dard, focusing on the POSIX.1-2008 specification. The chapter then proceeds to
detail the test case created for the rename directive, ending with a discussion of
the results.

3.1 The RTEMS Test Suite
Every RTEMS test case is located in the testsuites directory at the root of the
RTEMS source code, organized by category:

• fstests - File system test suite. The test case created during this project is
located in this directory;

• libtests - Library test suite;

• mptests - Multiprocessor test suite;

• psxtests - POSIX API test suite;

15

16 Rename POSIX Function Unit Test

• psxtmtests - POSIX timing test suite, to measure the POSIX directives exe-
cution time and other benchmark and performance tests;

• samples - Sample RTEMS applications;

• smptests - Symmetric MultiProcessing (SMP) test suite;

• sptests - Single Processor test suite;

• tmtests - Timing test suite, to measure the RTEMS directives execution time
and other benchmark and performance tests;

• support - Contains support software and headers available to any test case.
Each test category directory may have its own support directory, which will
have the support files to that specific category of tests.

To create a new test case a new directory must be created at the appropriate
test category directory, and should contain:

• Makefile.am - automake makefile so the test can be compiled;

• test_name.doc - The test documentation;

• test_name.scn - The latest test output/results;

• test source files - The actual test code.

Each test case must print a message both at the start and at the end of the
test case. During the course of this project RTEMS started a basic test API
(rtems/test.h header file), which at this time just prints the test case start and
ending message in a standardized fashion, and provides a stub function that will
permit printing profiling reports in the future.

3.2 Portable Operating System Interface
Portable Operating System Interface (POSIX) is a collection of standards main-
tained by the Institute of Electrical and Electronics Engineers(IEEE), which com-
prise a set of specifications for different aspects of an operating system behavior,
primarily UNIX-based systems [14] [22]. Standardization is important to ensure
that the same system call behaves the same way on any compliant system.

For a system to be POSIX-compliant it needs to implement the POSIX core
standard: the POSIX.1. RTEMS provides its POSIX implementation [20] through
its POSIX API, which also implement some POSIX extensions, mainly for threads.

3.3 The Rename Specification Test Case 17

3.2.1 POSIX.1-2008
A POSIX specification defines how a series of system calls must behave in all
thinkable situations, through a series of conditions and constraints. For each di-
rective the specification defines:

• The header file where the directive must be defined;

• Function parameter types;

• Detailed description using an if-then approach to describe the conditions
and constraints to the function behavior;

• Return values;

• Error situations, as well as the right error codes to be set.

Some directive specifications group directives with very similar purposes, such
as renameat which final goal is the same as rename.

3.3 The Rename Specification Test Case
The rename directive shall change the name of a file.

i n c l u d e < s t d i o . h>

i n t rename (c o n s t c h a r ∗ old , c o n s t c h a r ∗new) ;

Listing 3.1: Rename directive prototype.
In the rename directive prototype (listing 3.1), the old argument must point

to the path name of the file to be renamed, and the new argument must point to
the new file path name. This means that rename should also be able to move files
across directories. If the file passed through new exists, old shall become new
and old must be deleted.

3.3.1 The Test Case
The created test case is at testsuites/fstests under the name fsrename. This test it
file system independent, so it can be tested with any file system. It must, how-
ever, be executed on a file system. Only one file system has been tested with
fsrename, the Mounted In Memory File System, or MIMFS, under the name
mimfs_fsrename. This secondary test case just initializes and mounts the In Mem-
ory File System (IMFS) and calls the fsrename test case.

18 Rename POSIX Function Unit Test

The structure of the created test case divides the rename POSIX specification
into 8 logical sections, each tested through a test function. Each function starts by
declaring any needed variable or structure, and sets a test working directory.

For each part of the test the necessary files and directories are created from
scratch, so it does not depend on previously used files, thus avoiding error chains.
When some functionality has been tested, all the generated files and directories
are deleted, and when the function ends it deletes the working directory as well.

The following are the test functions used by the test case.

symbolic_link_test

Tests symbolic link renaming. A symbolic link is a file on its own that points
(links) to another file, which may or may not exist. This function tests that rename:

• Always operates on the symbolic link itself and never touches the file it
links to;

• Gives an ELOOP error code if either new or old point or contain a symbolic
link loop.

same_file_test

Tests same file renaming. It also tests with hard links, which are just aliases to
existing files, so there can be several files which are in fact the same file.

This function tests that rename does nothing if old and new are the same file,
either because they have the same file path or because the both point to the same
file on the disk (through an hard link).

directory_test

Tests directory renaming, including the rename of files within directories pro-
tected with a sticky bit. A sticky bit on a directory defines that only the file or
directory owner (or the root user) can rename or delete a file on that directory.
This function tests that rename:

• Gives an ENOTDIR error code if trying to rename a directory with a file;

• Gives an EISDIR error code if trying to rename a file with a directory;

3.3 The Rename Specification Test Case 19

• Gives an EINVAL error code if trying to rename a directory with an ancestor
directory;

• Gives an EEXIST or ENOTEMPTY error code if trying to rename a direc-
tory with a non empty directory;

• Can rename a directory with an empty directory;

• Gives an EMLINK error code if trying to rename a file which would move it
to an already full directory (the directory link count is already LINK_MAX);

• Gives an EPERM or EACCESS error code if trying to rename files within
and to a directory with a sticky bit set.

arg_test

Tests the function behavior with certain function arguments. Rename must:

• Rename an existant old file with the name of a non existant new file;

• Give an ENOENT error code if the file/directory to be renamed (or part of
its file path) does not exist;

• Give an ENAMETOOLONG error code if new is longer than NAME_MAX.

arg_format_test

Tests the function behavior with certain argument formats. Rename must:

• Give an EINVAL or EBUSY error code if any of the arguments contain a
final component that is a dot (current directory) or dot-dot (ancestor direc-
tory);

• Give an ENOENT error code if any of the arguments is an empty string.

write_permission_test

This function tests the renaming of files on a directory with no write permission.

Rename must give an EACCES error code if either old or new points to a file
on a write protected directory.

20 Rename POSIX Function Unit Test

search_permission_test

This function tests the renaming of files on a directory with no search/execute per-
mission.

Rename must give an EACCES error code if either old or new points to a file
that is on a search/execute protected directory.

filesystem_test

Tests file renaming across different file systems.

Rename may give an EXDEV error code if old and new are on different file
systems.

3.3.2 Test Case Unchecked Cases
The produced test case does not test some details of the specification, because
these details are either unable to be tested with an emulator, too complex to setup
or because they are already tested by existing test cases.

The test case does not check the following error cases:

• EIO - physical error on the hard disk;

• ENOSPC - no space left in the new file path;

• EROFS - renaming on a read-only file system, as it is already covered by
the testsuites/fstests/fsrofs01 test.

The test also does not check the following functionalities:

• File system lock during the renaming operation - for a file to be renamed
after another, that file needs to be deleted before the first file can have its
name, but in the meantime the file name must remain visible to the system;

• Free file disk space when link count reaches 0 - if rename deletes a file
during its operation, and the file link count reaches 0 (no reference in any
file system to that file after rename deletes it), the space occupied by the file
shall be freed and no longer accessible. This would depend on the statvfs
directive, which provides disk statistics, but it is not implemented for the
RTEMS IMFS file system.

3.4 Results 21

3.4 Results
The full test results can be seen at appendix A. They reveal that the current
RTEMS implementation of the rename directive fails at:

• Renaming symbolic links;

• Giving an ELOOP error at symbolic link loops;

• Renaming a file with itself;

• Renaming a file with itself through an hard link;

• Giving an ENOTDIR error when renaming a directory with a file;

• Giving an EISDIR error when renaming a file with a directory;

• Giving an EINVAL error when renaming a directory with an ancestor direc-
tory;

• Renaming an empty directory with another empty directory;

• Giving an EPERM or EACCES error when renaming files on a directory
with sticky bit set;

• Giving an ENOENT error when renaming a non existant file or file path;

• Giving an EINVAL or EBUSY error when renaming file paths which end in
dot or dot-dot or empty string file paths;

• Giving an EACCES error when renaming files on a write protected direc-
tory;

• Giving an EACCES error when renaming files on a directory with no search/ex-
ecute permissions with a file on a directory with search/execute permissions.

3.5 Conclusions
This chapter introduced the RTEMS test suite, the POSIX standards and described
the implementation of a test case for the rename directive, under the RTEMS
POSIX API. With a test case in hand the rename directive may then be made
POSIX conformant by solving the components that failed the test. This test case
can also be easily extended to the renameat directive. During the development
of this test case it was also noted that the IMFS file system does not have an

22 Rename POSIX Function Unit Test

implementation for the statvfs directive. The test developed during this project
and described in this section has already been merged into the official RTEMS
code base [8].

Chapter 4

Device Driver Development

Drivers are an important part of an operating system, as they make it possible to
connect and use hardware on a computer, in a way that hides the underlying com-
plexity of how a specific hardware device works. A device or peripheral device
can be, for instance, a keyboard, a printer, a memory card or some unique custom
built device that sweeps the dust on a desk. Device driver development is and will
continue to be important as devices get more diverse and complex.

This chapter will introduce device drivers and the important concepts that are
needed to develop one, such as the notion of execution spaces, concurrency, driver
operations, time, memory, device communication and file systems while focusing
on a specific type of device made of memory blocks: block devices.

4.1 Device Drivers

Computing needs a physical medium to happen - the hardware - or at the very
least, it must have a physical interface for it to be of any value. The hardware
can be viewed as a body, and just like us humans, the hardware does not work
without a brain to control it. That is the role of the operating system: to operate
the hardware. But what happens if we attach a new member to the body? Just like
us, the operating system would need to be rewired to operate the new member. As
far as this short analogy goes, the member we just attached to our body can be
a keyboard, and the operating system (the brain) would need to be instructed on
how to communicate and perceive the keyboard. This keyboard would be periph-
eral to our system, in the sense that the computer can still work without one, so it
just extends the system capabilities.

A device, or peripheral device, is then some type of hardware that is connected

23

24 Device Driver Development

to a system to provide some extra feature. However, this requires that the operat-
ing system running on that system can acknowledge and interact with the device,
and for that it needs the right device driver. A device driver is a small part of the
operating system that knows how to interact with a type of hardware, and device
drivers can always be added to support new hardware: just as learning a new lan-
guage.

A good device driver should provide a mechanism - access to the hardware ca-
pabilities and features - and not a policy that defines how those capabilities can be
used [7]. A memory card driver, for instance, should show the card to the system
as a contiguous array of data blocks. Its the role of a system application to provide
policies, such as checking if a user has permissions to access a certain file, or if
the file can be accessed directly or via a file system. By not enforcing any policy
the driver can be used by any application, thus promoting code reuse.

A badly designed driver can also lead to security problems, as drivers usually
run in a privileged environment. Care should be taken with buffer overflows,
user/application input or user commands with potentially harmful results, such as
formatting a memory card.

4.2 Kernel and User Space Drivers
The point of having an operating system is to provide programs with a consistent
view of the computer’s hardware, while keeping the programs operations inde-
pendent and protected against unauthorized access to the system’s resources [7].
A program may then run in two main execution environments:

• The kernel space, where a program can do anything it wants with the system
resources;

• The user space, where resource access is constrained.

This is enforced through the processor, which can provide different operating
levels, such as a supervisor mode for kernel space and a user mode for user space
programs. Because a driver is also a program, this means that it can run from either
execution environment, which may not seem intuitive at first since a driver needs
to directly operate the kernel controlled hardware resources. This leads to the
notion of an high and low level driver, where a low level driver interacts directly
with the hardware in kernel space and provides a set of directives available to
the user space, where an high level driver can use those directives to operate the
hardware - to some degree - from user space.

4.3 Concurrency and Compiler Optimization 25

4.3 Concurrency and Compiler Optimization
The problem of program concurrency appears when the processor switches pro-
grams in the middle of their execution and they rely on data that may be modified
by other programs while they are waiting to execute again, leading to unexpected
results. The compiler and even the CPU may also change the instruction execu-
tion order for the sake of performance optimization [7]. This problem is obvious
with multi-core systems, where several programs can execute at the same time,
but may also happen on a single processor system if a program or other entity can
preempt the processor, such as an hardware interrupt from a device.

Each program has a context: the CPU register values, the process state and the
program memory configuration [22]. When the CPU is preempted or scheduled
to execute another program, it saves the current process context in memory and
switches to the new program context. If both programs rely on a shared or global
variable, context switching can introduce unexpected results. The compiler may
also optimize the execution order of the program, such as memory access instruc-
tion or omission of seemingly unnecessary instructions, such as two consecutive
reads. Because hardware is usually inflexible in the way it works, doing a read
before a write or omitting a consecutive read will most likely lead to unexpected
results. Context switching may also create changes in the execution order of in-
structions in the hardware, if more than one device is using the same memory
registers at the same time.

To solve the concurrency problem the developer needs to ensure that their code
is reentrant, meaning that it can be run in more than one context at a time.

4.4 Major and Minor Numbers
To use a certain device the operating system must have a driver that enables it to
interact with the device hardware. However, multiple devices can be connected
to a system that uses the same device driver. One example is an Universal Serial
Bus (USB) controller driver, which may control a number of USB ports: the driver
is the same to all ports, but each port is an independent device.

To manage this situation, most systems use a major and minor number ap-
proach, where each driver is given a major number, and every device is given a
minor number that is specific for the driver it uses. This must be the first thing
any driver code does at the start: register the driver major number and assigning a
minor number to the device. While the major number must be unique in the entire

26 Device Driver Development

system, minor numbers are driver specific. This allows a device to be uniquely
identified, while at the same time associating it with a device driver.

To ensure that a driver major number is unique, RTEMS and most systems
allow dynamic allocation of major numbers, where the system assigns the next
greater major number that is not yet registered. Minor numbers, however, are
managed by the driver itself, so it is up to the driver developer to manage the many
devices that may use the driver at the same time and to assign minor numbers
correctly.

4.5 Driver Operations
As seen previously in this chapter, a driver provides an interface to the system
so it can communicate with a device. That interface is just a list of directives, or
operations, that can be used to access the device hardware. Each type of device
will have a set of specific operations, which may not make sense to use in others.
For instance, a keyboard device driver probably will not need to provide a write
operation to an output device such as a screen. Also, unique devices will also need
to provide unique operations, so the operations that a device driver may provide
can be as diverse as there are devices to connect to a computer, however some
operations are usually provided:

• Initialize - This would be the first operation called when using a driver. It
prepares the operating system for any needed resource (memory and disk
space, for instance) and performs any required hardware initialization se-
quence or hardware checks;

• Open/Close - Depending on the device, this function could be used to open
or close an hardware port (such as a CD tray), or be used as the initialize
call (for open) and as an unmount call to unmount an hard disk from the
system;

• Read/Write - As the names suggest, the driver would provide these opera-
tions so the system can do I/O with the device;

• Input/Output Control (IOCTL) - This would be the preferred way to imple-
ment any unique operation while using a common driver framework. The
IOCTL operation allows the system to send requests to the driver, which
can be defined by the driver itself, avoiding the creation of a new system
call [22] [7].

The device driver created for this project is IOCTL based, which receives read
and write requests to perform I/O operations on the device.

4.6 Time 27

4.6 Time
Every action in the universe takes time, and hardware devices are no exception.
Every device driver must take into account the time that the hardware takes to
complete a certain task, for instance, the time it takes to write to an I/O register.
If the CPU can execute thousands of instructions per second, but the device hard-
ware takes 150 milliseconds to process a command, the device driver must wait
at least 150 milliseconds before allowing the next command to be sent, otherwise
the device may not be ready to execute the following commands if they depend
on the first.

To create a delay on a device driver it is important to consider how a CPU clock
tick compares with the speed of the device, because a small delay on the device
can mean a long delay on the CPU [7]. Delays may be introduced through busy
waits, where the CPU is occupied waiting and does not attend other processes,
or through a timeout timer, which sleeps the process (yielding the processor to
perform other tasks) until the timer ends.

4.7 Hardware Communication
A driver sits between the software programs and the hardware circuitry, and for
that reason it must be able to communicate with both of them [7]. To control
any peripheral device the system reads and writes to the device registers, which is
done through I/O ports. These I/O ports can range from simple digital I/O hard-
ware pins, to complex data buses such as the ones used on the USB protocol.

Each device has several memory registers, that can be accessed at consecutive
memory addresses either in the memory address space or in the I/O address space
depending on the device type. The difference between I/O registers and Random-
access memory (RAM) is that I/O operations will have side effects on the device
hardware, while RAM operations just store and retrieve values. As mentioned in
section 4.3, both the compiler and the CPU may optimize memory accesses by
using caches, which will not affect either the device or system’s memory, or may
reorder the sequence of instructions so that the memory access is faster. The prob-
lem is that while for RAM memory accesses this is a desirable feature, it does not
work for hardware memory registers and can lead to some very hard to debug er-
rors. Peripheral devices have strict execution orders for I/O operations, and these
operations must happen on the physical memory registers, so no caching is al-
lowed.

28 Device Driver Development

To solve the problem with compiler optimization and hardware reordering the
usual solution is to use a memory barrier between the operations that must be vis-
ible to the processor in a particular order. Memory barriers, however, affect the
driver performance, so they must only be used where needed. These operations,
as any I/O operation, are highly processor dependent, because each CPU handles
data differently, making the related source code platform dependent.

Another aspect of hardware communication is that while the CPU is aware
of changes in the RAM memory, changes in the peripheral hardware memory
registers are outside the CPU reach, so it must have a way of keeping with the
hardware memory register updates [22]:

• Polling - the CPU checks the status of a memory register in the peripheral
device periodically (every 100 milliseconds, for example);

• Interrupts - the hardware connects with the CPU through an interrupt-request
line, which can be used by the hardware to signal the CPU of some change
in the hardware memory registers or I/O operation.

Polling can be very inefficient, because each time the CPU polls the hardware
and there is no change in the memory registers is time that could be used to do
something else. The ideal is to use hardware interrupts, which will be introduced
on the next section (4.8).

4.8 Interrupt Handling
Devices deal with the real world, and the notion of time can be very different be-
tween the system and the peripheral device, making it undesirable to have the sys-
tem waiting for external events (read about polling on the previous section (4.7)).

An interrupt is just a signal sent by the hardware to get the CPU’s atten-
tion [22] [7]. This is done through interrupt-request lines in the CPU, which
are sensed after the execution of every instruction. This sensing can be seen as a
super fast polling, since it happens within the CPU itself, and when it detects a
signal it catches it and dispatches it to the corresponding interrupt handler.

Each processor has a limited number of interrupt lines, and for that reason
two or more drivers may use the same interrupt line to connect with their device.
Also, interrupt handlers run concurrently with other code, so interrupt handlers
need to be designed with concurrency in mind. A driver must require an interrupt
channel to the operating system before using it and release it when finished, and

4.9 Memory 29

must register an interrupt handler for the assigned interrupt channel during driver
initialization or opening (refer to section 4.5), before instructing the hardware to
generate interrupts.

Interrupt handlers can not transfer data to or from user space (refer to sec-
tion 4.2) as they do not execute in the context of a process. They also can not call
any directive that would cause the handler to sleep, such as allocating memory, or
locking a semaphore. The role of the interrupt handler is, then, to acknowledge
the reception of the interrupt (by clearing the interrupt bit in the device memory
register, although this step can be device specific) and perform read or write oper-
ations depending on the nature and purpose of the generated interrupt, or wake a
sleeping process on the device (that may be waiting to receive some data).

An interrupt handler should also execute in the minimum time possible, so I/O
operations with the device may be interrupt-driven. This type of I/O uses a buffer
that is used by the interrupt handler to store data, that is then used by a process as
if it was reading data from the device, and vice-versa.

4.9 Memory
Memory is central to a system’s operation, be it RAM, caches or memory regis-
ters [22]. Any form of memory provides an array of words (a fixed-size chunk of
memory that the processor can handle as a unit, which is specific to a processor
hardware architecture), and each word has its own memory address. This memory
addresses can be physical addresses in the real memory chip, or generated by the
CPU. Therefore memory addresses can be organized in a physical address space,
or in a logical address space, if CPU generated.

4.9.1 Memory Mapping and Direct Memory Access
Memory mapping and Direct Memory Access (DMA) are two ways through which
an application can access a device’s memory, and it is based on the concept of
memory address spaces. Memory mapping a device means to associate a certain
range of logical or physical (RAM) addresses to a device hardware memory reg-
isters, so that when an application accesses one of those CPU generated memory
addresses it will be actually accessing the corresponding memory register on the
device [7]. However, this mapping is done by the CPU, so each time an appli-
cation writes to a memory address it must wait for the CPU to transfer that data
to the corresponding address on the device. Direct Memory Access (DMA), as
the name implies, refers to direct access to a device’s memory. This requires an

30 Device Driver Development

additional hardware mechanism on the system that can transfer I/O data directly
from system to device memory, without having to wait for the CPU, removing
computational overhead. A DMA transfer requires a buffer: a range of memory
addresses that contain data to be sent to the device or to store data from the device.
Because these transfers are done by the DMA hardware, the CPU does not know
when a transfer has finished, so interrupts (refer to section 4.8) are used to signal
it.

4.10 Block Devices
A block device is any device that permits access to independent, fixed-sized blocks
of data, such as hard disks, memory sticks, CD-roms, and so on [22] [7]. A block
has usually a length of 512, or any power of two number of bytes (depending on
the architecture and file system used), which makes the smallest number of bytes
that can be transferred.

These devices usually store file systems (refer to the section 4.11) which are
used to access the device data, but direct access to the device is also possible, such
as to install or repair a file system.

4.11 File Systems
A file system lives on a physical storage device where it defines how data is orga-
nized, keeping records of its tree of files and directories [22] [7]. The role of a file
system is to define how the information is stored in the device, and this requires
not a device driver but a different type of driver: a software driver which maps the
low-level data structures in the device to high-level data structures usable by the
operating system and other applications.

It is the file system that defines which information to store about each file
on a directory, and the file system driver provides the system with the necessary
directives to perform I/O operations on the file system. This file system driver,
however, can not interact with the block device itself, as it only works with files,
so it needs a device driver underneath to provide the data blocks that make the
said file. For instance, if an application asks the operating system for the file
“example.txt”, it sends the request to the file system driver, which will check the
file records to get the block indexes that make up the file and finally it will request
the block device driver to send the data on those blocks. Hence a device driver
for a block device only does block I/O, and does not work with higher level data

4.12 Block Device Drivers 31

structures such as files or directories.

4.12 Block Device Drivers
A block device driver provides access to block devices (refer to section 4.10)
through block I/O directives. Because it is responsible by the transfer of data
between the device and the system, block device drivers are critical for perfor-
mance [7]. A block device driver registers its device on the system and may be
called in several situations, such as to partition the disk, install a file system, check
a file system integrity or simply using a file system. All these operations look the
same to the driver as it just performs block I/O, which directives it must make
available to the operating system (refer to section 4.5).

The system may also have block request queues to keep track of which blocks
the system needs, and may reorder the requests to improve the performance in
non random accessible disks, through an I/O scheduler. An example of this type
of optimization is when two contiguous physical disk blocks are scheduled to be
fetched together. These optimizations may not be relevant at all if the access is
really random, and the computing cost of getting any block is the same, such as
with flash disks.

4.13 Conclusions
This chapter introduced device driver development targeted to block devices. It
briefly describes what a device driver is and how it works, the concurrency issues
that are raised, how to communicate with a device, memory management, file
systems, time and, of course, block device drivers. These concepts will be needed
for the following chapters, which will describe the device driver developed for this
project.

Chapter 5

Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that can be used as a
general purpose computer which also interacts with the outside world [12]. The
goal is to provide a cheap and simple system that can be used not only as a learn-
ing platform but as a full featured portable system that can also be embedded in
other systems.

This chapter will briefly describe the Raspberry Pi hardware features, why it
is an interesting/relevant platform for the RTEMS project, how the Raspberry Pi
boots, how to communicate with it and how its memory is organized.

5.1 Hardware Features

The Raspberry Pi is available in two models - A and B - which share most of the
same hardware features. This project used a Raspberry Pi model B for its devel-
opment and this section will describe some of the Raspberry Pi relevant hardware
features to this project.

5.1.1 System on a Chip

A System on a Chip (SOC) is an integrated circuit that contains all the necessary
components to run a computer. The Raspberry Pi SOC comprises on a single
chip the Central Processing Unit (CPU), Graphics Processing Unit (GPU), Uni-
versal Serial Bus (USB) controller and Random-access memory (RAM) [12]. The
specific SOC used on the Raspberry Pi is a Broadcom BCM2835.

33

34 Raspberry Pi

CPU

The Broadcom BCM2835 uses an ARM1176JZF-S (ARM11 with ARMv6 in-
struction set) CPU with a clock speed of 700 MHz.

GPU

The Broadcom BCM2835 SOC provides a Broadcom VideoCore IV GPU, provid-
ing Open GL ES 2.0, hardware-accelerated OpenVG, and 1080p30 H.264 high-
profile encode and decode. As a general purpose computer it can be connected
to an High-Definition Multimedia Interface (HDMI) monitor or television screen,
with a standard keyboard and mouse, and used to browse the Internet and play
high-definition video. This also makes it a very interesting device to embed in
other systems to provide graphics support.

Because the GPU documentation is proprietary, interaction with the GPU is
done through a mailbox interface [11]. The mailbox interface is a register that
has several channels (“mail accounts”) for different resources on the board (to
do power management or control the frame buffer graphics) , so a driver sends a
buffer to the CPU with a request (an “email”) to one of them, which the GPU fills
with the requested data.

Memory

The Raspberry Pi SOC comes with 256 mega bytes of RAM for the model A, and
512 for the model B.

5.1.2 External Mass Media Controller Interface
The Raspberry Pi board provides an External Mass Media Controller (EMMC)
interface, which is an embedded MultiMedia and SD card reader interface, com-
pliant with the Secure Digital High Capacity (SDHC) specification [6] and the
SD memory card specification [21] versions 3.00 [5]. The next chapter will detail
both these specifications and the SD protocol.

5.2 Raspberry Pi and RTEMS
The RTEMS project is always looking for new target platforms to run on, but read-
ily available boards are of special interest. A readily available board is a ready to
use piece of hardware that just needs some software to run on top. These boards
are interesting because they are built in a standardized fashion, thoroughly tested

5.3 Booting the Raspberry Pi 35

and commercially available.

The Raspberry Pi is one such board, with the added advantage of being ex-
tremely cheap. Porting RTEMS to the Raspberry Pi has benefits both to RTEMS,
which usually runs on very expensive hardware, and to the Raspberry Pi, by tak-
ing a proven RTOS to a popular piece of hardware. Currently the RTEMS support
for the Raspberry Pi is very limited and only provides an Universal Asynchronous
Receiver/Transmitter (UART) console driver on polled mode (refer to section 4.7),
which also accesses the CPU internal timer to control the data transfer operations.
To help in the effort of porting RTEMS to the Raspberry Pi this project provides a
driver for the card reader (EMMC) interface, which is described in section 5.1.2.

5.3 Booting the Raspberry Pi
The Raspberry Pi boots exclusively from a SD memory card, inserted on the on-
board SD card reader on the Raspberry Pi board: the EMMC interface (refer to
section 5.1.2). The SD card may, however, be used to boot the Raspberry Pi from
another memory device, such as an USB disk or another SD card.

The bootable SD card needs to be formatted with a File Allocation Table
(FAT)32 boot partition, which must contain the GPU firmware, a configuration
file, the operating system or kernel to be loaded, and some other necessary files.

Most of the boot process is done by the GPU [1]:

1. First stage bootloader - Mounts the FAT32 boot partition on the SD card so
the second stage bootloader can be accessed;

2. Second stage bootloader - Loads the GPU firmware from the SD card to
start the GPU;

3. GPU firmware - Once loaded, allows the GPU to start up the CPU;

4. User code - The user defined kernel.

5.4 Communication with the Raspberry Pi
To interact with any type of computer a user needs to be able to send and re-
ceive data, which is usually done through a keyboard (to send commands) and a
screen (to see the command results). However, as explained in section 5.2, the

36 Raspberry Pi

RTEMS support for the Raspberry Pi only covers the most basic of communica-
tions through an UART interface. This interface uses a serial protocol where data
packages are sent through a transmitter and received through a receiver, both con-
trolled by a timer. This requires a terminal emulation software running on a host
computer, such as the Minicom program on Linux, to be able to see the terminal
running on the Raspberry Pi. Nevertheless, this only permits sending commands
and receiving their output to an already running program on the Raspberry, which
must be loaded on the SD card (refer to section 5.3). In practice this means that
whilst developing an RTEMS application for the Raspberry Pi, each time the de-
veloper wants to test the application on the hardware he must remove the SD card
from the Raspberry Pi to an host system with a SD card reader, transfer the newest
version of the application and put the SD back in the Raspberry Pi to test it.

This process can create problems on the Raspberry Pi hardware overtime due
to the constant SD card movement, so a solution was found to send applications
through the UART interface using the xmodem protocol. This protocol enables
sending files over a serial connection (as the UART), but it requires an application
on both sides of the communication channel which use and implement the pro-
tocol. On a Linux host system minicom can provide xmodem transfers, but the
Raspberry Pi also needs an application that implements the protocol. A bootloader
that implements this protocol was found [23], and it was copied to the SD card so
the Raspberry Pi could use it. The way the bootloader works is simple: it waits
for a xmodem transfer, stores the sent program in memory (RAM) and then boots
the Raspberry Pi with that program. This means that when power is off the sent
program is lost, so the SD card contents do not change at any stage of the process.
When the developer wants to send another program he just needs to disconnect
and reconnect the power cable on the Raspberry Pi or the UART cable so that
the bootloader restarts and waits for another xmodem transfer. This process takes
approximately 2 minutes to send 1 mega byte of data due to the implementation
of the xmodem protocol on the bootloader, which uses the default transfer block
size of 128 bits instead of the maximum size of 1024 bits.

5.5 Memory Registers
As referred in section 4.9, the processor can generate memory addresses to create
a logical address space. This can be done either by the CPU or GPU Memory
Management Unit (MMU). On the Raspberry Pi the peripherals memory registers
are mapped to the physical memory in the RAM by the VideoCore or GPU, which
translate the addresses in the range of 0x20000000 to 0x20FFFFFF.

5.6 Conclusions 37

Access to the peripheral memory register address space must be protected
with memory barriers (refer to section 4.7) when more than one peripheral is be-
ing used, as the CPU may change peripherals at any time. This would make the
data arrive out-of-order in the memory registers, so a memory barrier should be
used before the first write to a peripheral and after the last read to a peripheral [5].
A memory barrier ensures that any explicit memory access done before the mem-
ory barrier is completed before executing the following memory accesses. The
Raspberry Pi CPU provides some memory barrier instructions, in the for of co-
processor assemblies [15] such as:

• Data Synchronization Barrier (DSB) - does not complete until all the previ-
ous instructions complete;

• Data Memory Barrier (DMB) - ensures that any explicit memory access af-
ter the DMB instruction only start when all explicit memory accesses before
the DMB instruction complete;

• Instruction Synchronization Barrier (ISB) - flushes the pipeline in the pro-
cessor, so all the following instructions are fetched from cache or memory
once the ISB completes.

As for the register memory size, each register in the Raspberry Pi SOC is 32
bits wide. These are used to control the peripherals through bitwise operations in
accord with the Broadcom BCM2835 ARM Peripherals datasheet [5].

5.6 Conclusions
This chapter introduced the Raspberry Pi and its features, how it boots, the current
limitations of RTEMS for the Raspberry and and briefly describes how the mem-
ory is structured and accessed. It also describes the current RTEMS development
process for the Raspberry Pi, and introduces the EMMC interface, which will be
detailed in the next chapter.

Chapter 6

Secure Digital Protocol

Secure Digital (SD) cards are used in every type of mobile device today that re-
quires portable flash memory. This popularity is due to their portability across
many different systems and hardware, where a SD card may be used with any SD
host controller (or card reader) on any operating system that provides a SD device
driver.

This chapter will introduce the SD standard that makes this possible, explain
what exactly is a SD card, how a device driver can access the card and how the
communication with the card unfolds.

6.1 The Secure Digital Standard
The Secure Digital (SD) standard defines a memory or I/O card that can be used
with a wide array of devices [3], including mobile phones, digital cameras, Global
Positioning System (GPS) and embedded devices.

This section will introduce the SD memory card standard with a short refer-
ence to the Secure Digital Input Output (SDIO) card standard, which is outside
the scope of this project.

6.1.1 The Secure Digital Memory Card
The Secure Digital (SD) memory card standard defines a card which purpose is to
store data permanently, so every SD memory card is categorized by their storage
capacity:

• Secure Digital Standard Capacity (SDSC) - Up to and including 2 Giga
Bytes (GB) of storage;

39

40 Secure Digital Protocol

• Secure Digital High Capacity (SDHC) - More than 2 GB and up to and
including 32 GB;

• Secure Digital Extended Capacity (SDXC) - More than 32 GB and up to
and including 2 Tera Bytes (TB).

Apart from the storage capacity, each SD card is also defined by their speed
class and form factor, such as mini, micro or full size. Any SD card can be used
with a host controller (card reader) compatible with its form factor, but the same
card may report different performance levels (data transfer speeds) across differ-
ent host systems. This happens because there are two stages though which the
system’s data must pass through before reaching the memory card:

• The device driver - Where the performance will depend on which versions
of the SD standard the driver supports, and how they are implemented;

• The host controller - Each card reader only supports up to a certain version
of the SD standard. This means that a recent card running on an older host
controller will be limited to the capabilities supported by the host controller.

To the driver developer this poses the challenge of knowing exactly what the
hardware (the card and host controller) supports, and then adjusting the data trans-
fer operations accordingly. This is the only part of the data transfer process that
a user/developer can control, as the SD card and host controllers have their own
implementations of the standard and therefore operate on the data in a predefined
and non configurable way.

Each SD card has a tiny microprocessor that is the only one that can directly
operate on the card’s flash memory, so when a system is interacting with an SD
card it is in fact interacting with this microprocessor and not the flash memory
itself. The reason behind this is the increasingly small size of the flash memory
units, which makes direct access to the flash memory very card specific and there-
fore impractical to be done at the host controller or operating system level, as it
would imply different device drivers on a system for every SD card model from
any given manufacturer [21] [4].

As for the host controller hardware, it provides the operating system with a
register set that can be used to interface with an inserted SD, SDIO or even Multi
Media Card (MMC) card, as in the case of the EMMC interface used in the Rasp-
berry Pi (refer to section 5.1.2). Each type of card requires a host controller stan-
dard to be supported/implemented on the physical host controller hardware, and
in the case of both SD and SDIO cards this is handled by the SD host controller
standard [6].

6.1 The Secure Digital Standard 41

6.1.2 The Secure Digital Input Output Card

The Secure Digital Input Output (SDIO) card is defined in the SD standard to in-
clude the ability to use a SD card slot for more than memory cards. The concept
is similar to the USB protocol, where an USB port may be used to access mem-
ory devices (such as USB memory sticks) but also other devices such as wireless
receivers, fingerprint readers, and so on. A SDIO card is then a device that uses
any standard SD card slot to extend the functionality of a device [3].

As stated in section 6.1.1, the SD host controller has the ability to control
both SD memory cards and SDIO cards, but because it was not the objective of
this project to support SDIO cards the provided driver ignores any inserted SDIO
card.

6.1.3 Operating Modes

The SD standard defines that each SD card must implement two operating modes:
the SD or native mode and the Serial Peripheral Interface (SPI) mode. The native
mode uses a communication protocol defined by the SD Association, which also
owns the protocol documentation. For that reason, a developer who wants to write
a driver using the SD native mode must either pay a license to the SD Association
to gain access to the full documentation of the standard, or use the simplified spec-
ifications which can be downloaded for free on the SD Association website [3].
As for the SPI mode, it is a secondary communication protocol designed to work
with a SPI channel, however, the SPI standard only defines a physical link and not
a complete data transfer protocol [21], so it must still use a subset of the native
SD communication protocol and commands to work.

The advantage of the SPI mode is that its standard is completely open, so any-
one can see its full documentation. It also allows to add a SD host controller to
any device with a SPI interface, so no native SD card reader would be required.
Nevertheless, using a SD card through a SPI bus implies a performance loss [21].
In the case of the Raspberry Pi it offers a native SD card reader, the EMMC inter-
face (refer to section 5.1.2), and also offers a SPI interface but because RTEMS
does not provide a driver to the SPI interface on the Raspberry Pi yet, this project
implemented a SD card driver for the native protocol instead.

42 Secure Digital Protocol

6.2 The SD Bus Protocol
To communicate with a SD card using the native mode (refer to section 6.1.3) the
SD bus is used. This type of communication is based on command and data bit
streams which start with a start bit and end with a stop bit [21]. To start an opera-
tion on a SD card a command is sent from the host to either a specific card (using
the card address) or to all connected cards (a broadcast command). The card’s re-
sponse to the a command is stored on the host controller response registers, from
where the host system can then retrieve and interpret this data.

Every card operation, such as sending commands, receiving responses or trans-
ferring data, is done using memory blocks. Each block ends with a Cyclic Redun-
dancy Code (CRC) checksum code to protect it against transmission errors.

6.2.1 SD and Application Specific Commands

Both SD and application specific commands are identified by an index, and may
be sent to all cards connected to a host controller, or to a specific card (each card
is given an individual address by the host controller). Each command may also
accept arguments (to tailor the command behavior as needed) and may lead to a
card response (in the case of a request).

A SD command and its response compose a 48 bit block each which contains:

• One start bit;

• One direction bit (if the command is coming or going to the host controller);

• The command index;

• The optional command argument (if a command) or the card status (if a
response to a command);

• The Cyclic Redundancy Code (CRC) code to protect against transmission
errors;

• One end bit.

The SD protocol specifies for each command if it must be accepted by all SD
cards (mandatory command), is optional or is reserved to the card vendor, as well
as the acceptable arguments and which host controller register the card uses to
store the response to the command. The application specific commands work as

6.3 The SD Host Controller Protocol 43

an extension to the SD command set that focus more in application related func-
tion of the card, such as access to the card’s storage.

Sending commands to a SD card must, however, take into account the current
card state and the command transition table defined by the protocol, which spec-
ifies when each command may be sent to the card and which state the card will
take after the operation, such as idle or ready for instance.

6.2.2 SD Card Registers
Each SD card contains a register set which carries the card specific information:

• Operating Condition Register (OCR) - stores the card voltage support;

• Card IDentification (CID) register - contains card identification data, for
instance the manufacturer, product name, serial number and manufacturing
date;

• Card Specific Data (CSD) register - provides information about how to ac-
cess the card contents. This register has different versions for SDSC and
for higher storage capacity card such as SDHC and SDXC cards, so a de-
vice driver should take the register version into account when reading the
register as the structure is different for each version;

• Relative Card Address (RCA) register - stores the relative address of the
card which is assigned by every host controller. This allows commands to
be sent to a specific card;

• SD card Configuration Register (SCR) - this is a vendor specific register
which is populated in the factory with vendor specific configuration options
for special features that are not mandatory by the SD standard.

Each register is accessed by a corresponding SD command.

6.3 The SD Host Controller Protocol
As referred in section 6.1.1 the host controller hardware provides the host system
with a register set that can be used to interface with an inserted card. Some of
these registers include:

• SD command generation - Generates commands to be sent to a card, includ-
ing their arguments;

44 Secure Digital Protocol

• Response registers - Hold a card’s response to a sent command;

• Host control registers - Can be used to operate the host controller hardware,
such as getting the present status, controlling the SD bus or resetting the
hardware;

• Interrupt control - To manage host controller interrupts, such as when a card
is inserted;

• Capabilities - Informative register with vendor specific support information
about a specific host controller hardware;

• Advanced DMA registers - Allows DMA access to the card, without inter-
rupting the CPU execution (refer to section 4.9.1);

• Transfer Mode - Defines the data blocks transfer mode, such as single or
multi-block transfer, the transfer direction (to or from the SD card) and if
the transfer uses DMA or not;

• Preset value registers - Contains the default values used by the host con-
troller for each card.

To access these registers, and therefore to use the host controller and access a
connected SD card, a device driver must take a specific sequence of actions which
together compose the SD Protocol. The following subsections will introduce the
protocol sequences that are implemented on the proposed device driver.

6.3.1 SD Card Detection
The flow chart shown in figure 6.1 represents the full sequence of steps required
to detect the presence of an inserted card.

(1) Enable a interrupt to be generated by the host controller when card
movement is detected (insertion or removal);

(2) Clear the interrupt on the host controller register, before using or finish-
ing to use the card;

(3) Confirm that the card is inserted (or not) on the host controller registers
before any further action.

The host controller records the card presence on its memory registers, and the
only purpose of the generated interrupt is to notify the host system that a card has
been inserted and can be used. Because the Raspberry Pi must have at all times a
SD card inserted (refer to section 5.3), the proposed device driver only performs
step (3) as reassurance that the host controller recognizes the card.

6.3 The SD Host Controller Protocol 45

Figure 6.1: SD Card Detection Sequence [6].

6.3.2 SD Clock Control

For the system to be able to send commands to any SD card the host system must
supply a clock, which will be used to synchronize the data transfers. The sequence
to initialize the card’s clock is shown in figure 6.2.

(1) Calculate a clock divider, which will be used to determine the SD clock
frequency. This divider is used to divide the host system clock frequency so
the supplied SD clock frequency matches the base clock frequency of the
host controller;

(2) Set the host controller clock;

(3) Wait until the clock is stable;

(4) Enable the SD clock, so the host controller starts to supply the clock to
the card.

46 Secure Digital Protocol

Figure 6.2: SD Clock Supply Sequence [6].

6.3.3 SD Card Initialization and Identification
When a card is known to be inserted in the host controller and a clock has been
supplied to it, the device driver may then proceed to initialize and identify the card
to the host system. This process is described in figures 6.3 and 6.4.

(1) Reset all cards to idle state (send command 0);

(2) Check and set card voltage support (send command 8). The card only
responds if the card is at least a SDHC memory card, so any SD memory
card with less storage capacity or any non SD card will not respond to this
command;

(3) Check the response to the previous command, and store it on a flag;

(4) If the response is an error abort the sequence;

(5) Send command 5, a SDIO specific command, to the card;

6.3 The SD Host Controller Protocol 47

(6) If the card responds to the previous command the inserted card is a SDIO
card. As the proposed driver does not support SDIO cards, the driver aborts
the sequence here;

(11) Check the command 8 flag set in step (3). If the flag is set (the card
responded to command 8) then the card is an SD memory card with lesser
storage capacity than an SDHC card or it is not an SD card (may be a MMC
card, for instance), and because these cards were not the objective of this
project, the proposed device driver aborts the sequence at this point;

(12) Get the OCR register from the card (send application specific command
41) to check the card voltage support. If the card does not respond it is not
a SD card;

(13) Check the received OCR information (refer to section 6.2.2);

(14) Initiate the memory part of the SD card by reissuing the application
specific command 41 with the operating voltage setting defined by the host
system (which should be within the supported voltage window defined on
the card’s OCR register);

(15) If the card does not respond to the previous command, it is not a SD
card and the proposed driver aborts the sequence;

(16) Wait until the card processes the sent command;

(17) The host finally recognizes the card as a SDHC or SDXC card;

(32) Get the card’s CID register (send command 2);

(33) Get the card’s RCA register (send command 3) to retrieve the card’s
relative address (to the host controller).

The skipped sequence steps are specific to SDIO or non SD cards.

6.3.4 SD Command Issue

The sequence shown in figure 6.5 details the process of issuing a command to a
SD card.

(1) Check the status of the command line (the line used to send commands)
for the command inhibit signal;

48 Secure Digital Protocol

(2)(3)(4) Check which type of command is about to be sent. If the command
may start a data transfer, the driver must check the status of the data line for
any command inhibit signal (step 4);

(5) Write the command arguments (if any) on the corresponding argument
register;

(6) Set the command register on the host controller to send the desired com-
mand to the card;

(7) The command has been sent to the card. If the command was a request
then wait for the response (refer to the other sequence).

6.3.5 Finalize SD Command
When a command is sent to a SD card with the intent of starting a data transfer, or
if the command acts as a request, the driver must stay alert for the card’s response.
The required sequence of actions is shown in figure 6.6.

(1) Wait for the command complete interrupt;

(2) Clear the command complete interrupt;

(3) Read the command response register on the host controller;

(4) If the command starts a data transfer and generates a transfer complete
interrupt when done, then wait for the interrupt, else move to step (7);

(5) Wait for the transfer complete interrupt;

(6) Clear the transfer complete interrupt;

(7) Check the response for errors;

(8)(9) Return the error status to the system application that originated the
request.

6.3.6 Transferring Data
The sequence in figure 6.7 describes the complete process of reading and writing
data blocks on a SD card.

(1) Set the size of the blocks to be transferred;

(2) Set the number of blocks that are going to be transferred;

6.3 The SD Host Controller Protocol 49

(3) Write the SD data command argument in the host controller argument
register;

(4) Set the transfer mode. The developed driver offers single and multi-
block data transfers;

(5) Set the command register on the host controller to send the desired com-
mand to the card;

(6) Wait for the data transfer command completion interrupt;

(7) Clear the interrupt;

(8) Check the host controller response register for any transfer error;

(10) If the device driver is writing to the card, wait until the system appli-
cation that wants to write to the SD card fills the write buffer, which has the
same size of a data block. When the buffer is full an interrupt is generated;

(11) Clear the buffer ready interrupt;

(12) Write the buffer contents to the block data register in the host con-
troller;

(13) Send the block to the card, and repeat from step (10) until all blocks
have been sent;

(14) If a system application is reading from the SD card, wait until the card
fills a read buffer, which has the same size of a data block. When the buffer
is full an interrupt is generated;

(15) Clear the buffer ready interrupt;

(16) Read the data block from the host controller data register;

(17) Continue to read blocks from the card until the requested number of
blocks have been read;

(19) Wait for the transfer complete interrupt, which confirms that the data
transfer is over;

(20) Clear the interrupt.

50 Secure Digital Protocol

6.4 Conclusions
This chapter introduced SD cards, the SD standard, as well as the SD bus and
SD host controller protocols. These concepts will be applied in the next chapter,
which will describe the implementation of a SDHC card device driver.

6.4 Conclusions 51

Figure 6.3: SD card initialization and identification sequence (part 1) [6].

52 Secure Digital Protocol

Figure 6.4: SD card initialization and identification sequence (part 2) [6].

6.4 Conclusions 53

Figure 6.5: SD command issue sequence [6].

54 Secure Digital Protocol

Figure 6.6: Finalize SD command sequence [6].

6.4 Conclusions 55

Figure 6.7: Finalize SD command sequence [6].

Chapter 7

Secure Digital Device Driver

This chapter describes the last deliverable of this project, which is the creation of
a device driver for the SD card interface on the Raspberry Pi running the RTEMS
operating system. The following sections describe how the SD protocol was im-
plemented, how the device driver works with RTEMS and also provides informa-
tion on how to use the device driver.

7.1 Implementing the Secure Digital Protocol

To create a device driver for a SD card, namely a SDHC card which was the type
of card used during this project, it must implement the SD protocol. This proto-
col is described in the SD standard (refer to chapter 6), and is used by the device
driver to interact with the SD card. The protocol implementation also used some
other code as reference [9].

The following subsections will briefly describe the most relevant functions
used in the driver implementation.

7.1.1 card_detection

s t a t i c
r t e m s _ s t a t u s _ c o d e c a r d _ d e t e c t i o n (s t r u c t emmc_block_dev ∗e)

Listing 7.1: Card detection function prototype.

Listing 7.1 shows the prototype of the function which checks the host con-
troller status bit for the presence of a SD card. This function implements the
sequence shown in section 6.3.1

57

58 Secure Digital Device Driver

7.1.2 sd_get_base_clock_hz

s t a t i c
u i n t 3 2 _ t s d _ g e t _ b a s e _ c l o c k _ h z (s t r u c t emmc_block_dev ∗e)

Listing 7.2: SD get base clock function prototype.
Listing 7.2 shows the prototype of the function used to to get the SD card base

clock rate through the Raspberry Pi mailbox interface (refer to section 5.1.1).

7.1.3 sd_get_clock_divider

s t a t i c
r t e m s _ s t a t u s _ c o d e s d _ g e t _ c l o c k _ d i v i d e r (s t r u c t emmc_block_dev ∗

e , u i n t 3 2 _ t ∗ d i v i d e r , u i n t 3 2 _ t b a s e _ c l o c k , u i n t 3 2 _ t
t a r g e t _ r a t e)

Listing 7.3: Get clock divider function prototype.
Listing 7.3 shows the prototype of the function which calculates a clock divi-

sor which is needed to supply a clock to the card (refer to the protocol sequence
in section 6.3.2. This function is mainly based in code from [9].

7.1.4 sd_handle_interrupts

s t a t i c
vo id s d _ h a n d l e _ i n t e r r u p t s (s t r u c t emmc_block_dev ∗e)

Listing 7.4: Interrupt handling function prototype.
Listing 7.4 shows the prototype of the function which handles the card’s inter-

rupts. It reads the host controller interrupt register (refer to section 6.3) and clears
any pending interrupt.

7.1.5 sd_issue_command

s t a t i c
r t e m s _ s t a t u s _ c o d e sd_issue_command (s t r u c t emmc_block_dev ∗e ,

enum commands command , u i n t 3 2 _ t argument , u s e c o n d s _ t t i m e o u t
)

Listing 7.5: SD issue command function prototype.
Listing 7.5 shows the prototype of the function that starts the process of send-

ing a SD command to the card. It starts by handling any pending card interrupts
(refer to section 7.1.4), and stops if the card removal interrupt was handled, mean-
ing that the card was removed. If the card was not removed, proceed with the
command issue (refer to section 7.1.5).

7.1 Implementing the Secure Digital Protocol 59

7.1.6 sd_issue_command_int

s t a t i c
r t e m s _ s t a t u s _ c o d e sd_ i s sue_command_ in t (s t r u c t emmc_block_dev ∗

e , enum commands cmd_reg , u i n t 3 2 _ t argument , u s e c o n d s _ t
t i m e o u t)

Listing 7.6: SD issue command intermediary function prototype.
Listing 7.6 shows the prototype of the function that actually sends SD com-

mands to the card. It does so by implementing the protocol sequences shown in
section 6.3.4 and 6.3.5.

7.1.7 sd_card_init

s t a t i c
r t e m s _ s t a t u s _ c o d e s d _ c a r d _ i n i t (s t r u c t emmc_block_dev ∗e)

Listing 7.7: SD card initialization function prototype.
Listing 7.6 shows the prototype of the function responsible by the host con-

troller and SD card initialization. It starts by getting the host controller SD card
slot version, which specifies the version of the SD host controller specification it
complies to. This should return a version of at least 2.00, since the driver does not
take into account any older specification.

This is followed by a check for a valid card by performing the card detection
sequence (refer to section 6.3.1), resets the host controller circuit and supplies the
card with the SD clock. For that it gets the SD base clock rate, calculates a clock
divider using that base clock rate (refer to section 6.3.2) and finally supplies the
SD clock to the card.

At this point it follows the protocol sequence shown in section 6.3.3, and de-
fines on the driver device structure the card’s block size and block count, which
will be needed to mount the card’s file system.

7.1.8 disk_ioctl

s t a t i c
i n t d i s k _ i o c t l (r t e m s _ d i s k _ d e v i c e ∗dd , u i n t 3 2 _ t req , vo id ∗ a r g)

Listing 7.8: Card I/O function prototype.
Listing 7.8 shows the prototype of the I/O function that is assigned to the

card’s device file on the system. It implements a disk IOCTL function (refer to
section 4.5) to attend the system’s data requests to the SD card. It receives the

60 Secure Digital Device Driver

device file, the request code and a buffer that may be used to store the read data
from the card, or may contain data to be sent to the card. Depending on the
request, it calls the write or read functions (refer to section 7.1.11).

7.1.9 sd_ensure_data_mode

s t a t i c
i n t sd _ en s u r e _d a t a _ mo d e (s t r u c t emmc_block_dev ∗e)

Listing 7.9: SD card data mode check function prototype.

Listing 7.9 shows the prototype of the function that starts the protocol se-
quence shown in section 6.3.6. It checks the card status and setups the card for
data transfer mode. If successful calls the function described in section 7.1.10.

7.1.10 sd_do_data_command

s t a t i c
i n t sd_do_data_command (s t r u c t emmc_block_dev ∗e , i n t i s _ w r i t e ,

u i n t 8 _ t ∗buf , s i z e _ t b u f _ s i z e , u i n t 3 2 _ t b lock_no)

Listing 7.10: Data transfer setup function prototype.

Listing 7.10 shows the prototype of the function that continues the work started
in 7.1.9. It calculates how many blocks were requested, the transfer direction (read
or write) and which transfer mode (single or multi-block) to use before sending
the command (refer to section 7.1.5).

7.1.11 SD I/O directives

i n t s d _ r e a d (s t r u c t emmc_block_dev ∗e , u i n t 8 _ t ∗buf , s i z e _ t
b u f _ s i z e , u i n t 3 2 _ t b lock_no)

i n t s d _ w r i t e (s t r u c t emmc_block_dev ∗e , u i n t 8 _ t ∗buf , s i z e _ t
b u f _ s i z e , u i n t 3 2 _ t b lock_no)

Listing 7.11: SD card I/O function prototypes.

Listing 7.11 shows the prototypes of the functions which are called by the
card’s IOCTL directive (refer to section 7.1.8) and starts a read or write opera-
tion. Both reading and write functions start by checking the card status (refer to
section 7.1.9). If the function reports that the card is ready send a data command
(refer to section 7.1.10).

7.2 The Device Driver Table 61

7.2 The Device Driver Table
RTEMS provides its device drivers through a device driver table that can be used
by an application to select only the needed drivers for a particular device setup.
This table is provided in the RTEMS confdefs.h header file which consists of a
series of conditional macros that adds or removes RTEMS features available to
the application, such as network or clock drivers or support for a specific file sys-
tem. This permits tailoring RTEMS for a specific application, keeping the system
size as small as possible (a desirable feature to have in an embedded system). As
described in section 4.5, a device driver table entry provides the set of directives
that the device driver provides to the system.

The device driver created for this project only provides the initialize directive
(see listing 7.12), as any operation with the card itself is done through an IOCTL
function (refer to section 7.1.8) assigned to the card during initialization.
r t e m s _ d e v i c e _ d r i v e r s d _ c a r d _ d i s k _ i n i t (r t e m s _ d e v i c e _ m a j o r _ n u m b e r

major , r t ems_dev i ce_mino r_number minor , vo id ∗ a r g)

Listing 7.12: Device driver table initialization function prototype.
Listing 7.12 shows the prototype of the function that initializes the device

driver, preparing the RTEMS system for the SD card and at the same time initial-
izes the SD card to be used. It initializes the disk I/O management component of
RTEMS, creates a device file for the card, initializes driver data structures and the
card itself (refer to section 7.1.7). If all goes well it setups the card on the system
and assigns it the disk IOCTL function which RTEMS applications will use to
read and write to the SD card.

7.3 Testing the Device Driver
The test application reads and registers the card FAT partition on the system using
the device file created by the device driver (hard-coded at /dev/sdcard, so the par-
tition device file becomes /dev/sdcard1), and mounts the card in a mount point
directory (/mnt/hda).

With the card mounted on the system, the test begins. It starts by reading a
text file from the card called emmc which should already be in the card. It prints
the file contents (proving that is can read from the SD card) and adds a new line
of text to that file. Then creates a new file on the card named ANDRE with the
same line of text that was added to the emmc file proving that the device driver
can also write to the SD card.

62 Secure Digital Device Driver

In the end the application unmounts the SD card from the system, which will
flush the RTEMS disk buffers to the card ensuring that no data is lost.

Figure 7.1: The test application running on the Raspberry Pi.

The results of the test can be seen in figures 7.1 and 7.2, and the test itself can
be found either in bitbucket [16] or in the CD-ROM that was delivered with this
report.

7.4 Conclusions
This chapter has described the relevant aspects of the device driver implemented
for this project, as well as how it was tested. It works with SDHC cards as that
was the only type of card accessible during the project development, but the base
driver work is done and can be expanded to support more SD cards.

7.4 Conclusions 63

Figure 7.2: The SD card state after the test, read on another computer.

Chapter 8

Conclusions and Future Work

Developing this project provided me with experience in driver development and
gave me the opportunity to contact with a RTOS system and to interact with its
developer community. The greatest challenge I faced was the low level develop-
ment needed and the necessity of interacting with Hardware with their own unique
problems. Hardware proved to be tricky to program and the fact that RTEMS does
not have a debugger for the Raspberry Pi did not help either.

The experience acquired during this project also helped me to craft a proposal
and to be accepted in the Google Summer of Code 2014 [13], where I will continue
the work started with this project by continuing to increase the RTEMS support
for Raspberry Pi peripheral devices.

8.1 Future Work

The work done for this project can f course be improved upon and extended. The
rename POSIX unit test, for instance, is considered at this point to be final and
has already made its way to the official RTEMS code base, but it represents a
test revealing that there is some work to be done in the RTEMS rename function
implementation. This was not an objective for this project, but nevertheless by
having a test in hand the implementation can now be corrected.

As for the SD device driver it can be optimized to provide better I/O perfor-
mance by taking advantage of more voltage and operating modes that each SD
card provides, and by using DMA access to the card’s memory. More important
than that, the device driver could also be more inclusive and stable (in RTEMS
standards), as it just covers SDHC cards and even in that category only one card
was used to test the driver. Because each type of card have its oddities, this means

65

66 Conclusions and Future Work

that the proposed driver can not be classified as stable as that would imply to test
the driver with much more cards which was impractical to do during this project.

Apart from the tangible work done, the knowledge gathered during this project
will definitely become an asset in the future, as I am now more confidant working
in low level system programming, which is important when working around any
operating system. Also the knowledge of the SD protocol can be useful outside
Raspberry Pi and RTEMS since the SD standard is present in so many places in
today’s mobile world, thus representing an advantage for future projects that can
be either based on this project or benefit from the knowledge it provided.

Appendix A

Rename POSIX test results

∗∗∗ BEGIN OF TEST FSRENAME MOUNTED IMFS ∗∗∗
I n i t i a l i z i n g f i l e s y s t e m MOUNTED IMFS

Old i s a s i m b o l i c l i n k and rename o p e r a t e s on t h e s i m b o l i c l i n k
i t s e l f

T e s t i n g rename wi th a rgumen t s : symlink01 , name02 EXPECT
"0"

FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 78
T e s t i n g l s t a t w i th a rgumen t s : name02 , &s t a t b u f EXPECT

"0"
PASS
T e s t i n g i f name02 i s now a syml ink
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 86
T e s t i n g u n l i n k wi th a rgumen t s : name01 EXPECT

"0"
PASS
T e s t i n g u n l i n k wi th a rgumen t s : name02 EXPECT

"0"
PASS
T e s t i n g u n l i n k wi th a rgumen t s : syml ink01 EXPECT

"−1"
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 94

New i s a s i m b o l i c l i n k and rename o p e r a t e s on t h e s i m b o l i c l i n k
i t s e l f

T e s t i n g rename wi th a rgumen t s : name02 , syml ink01 EXPECT
"0"

FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 116
T e s t i n g l s t a t w i th a rgumen t s : symlink01 , &s t a t b u f EXPECT

"0"

67

68 Rename POSIX test results

PASS
T e s t i n g t h a t syml ink01 i s n o t a syml ink
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 124
T e s t i n g u n l i n k wi th a rgumen t s : name01 EXPECT

"0"
PASS
T e s t i n g u n l i n k wi th a rgumen t s : name02 EXPECT

"−1"
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 131
T e s t i n g u n l i n k wi th a rgumen t s : syml ink01 EXPECT

"0"
PASS

T e s t i n g wi th s y m b o l i c l i n k loop ’ s

T e s t i n g rename wi th a rgumen t s : " pa th01 , name01 " EXPECT "
ELOOP"

FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 149
T e s t i n g rename wi th a rgumen t s : " pa th01 , name01 " EXPECT "

ELOOP"
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 152
T e s t i n g u n l i n k wi th a rgumen t s : name01 EXPECT

"−1"
PASS
T e s t i n g u n l i n k wi th a rgumen t s : syml ink01 EXPECT

"0"
PASS
T e s t i n g u n l i n k wi th a rgumen t s : syml ink02 EXPECT

"0"
PASS
T e s t i n g rename wi th a rgumen t s : " name01 , pa th0 1 " EXPECT "

ELOOP"
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 180
T e s t i n g rename wi th a rgumen t s : " name01 , pa th0 1 " EXPECT "

ELOOP"
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 183
T e s t i n g u n l i n k wi th a rgumen t s : name01 EXPECT

"0"
PASS
T e s t i n g u n l i n k wi th a rgumen t s : syml ink01 EXPECT

"0"
PASS
T e s t i n g u n l i n k wi th a rgumen t s : syml ink02 EXPECT

"0"
PASS

Rename f i l e w i th i t s e l f

69

T e s t i n g rename wi th a rgumen t s : name01 , name01 EXPECT
"0"

FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 244
T e s t i n g u n l i n k wi th a rgumen t s : name01 EXPECT

"0"
PASS

Rename f i l e w i th i t s e l f t h r o u g h a ha rd l i n k i n a n o t h e r d i r e c t o r y

T e s t i n g rename wi th a rgumen t s : name01 , pa th0 1 EXPECT
"0"

FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 271
T e s t i n g u n l i n k wi th a rgumen t s : name01 EXPECT

"0"
PASS
T e s t i n g u n l i n k wi th a rgumen t s : pa th0 1 EXPECT

"0"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 1 EXPECT

"0"
PASS

Rename d i r e c t o r y wi th f i l e

T e s t i n g rename wi th a rgumen t s : " d i r 0 1 , name01 " EXPECT "
ENOTDIR"

FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 343
T e s t i n g u n l i n k wi th a rgumen t s : name01 EXPECT

"0"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 1 EXPECT

"0"
PASS

Rename f i l e w i th d i r e c t o r y

T e s t i n g rename wi th a rgumen t s : " name01 , d i r 0 1 " EXPECT "
EISDIR "

FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 367
T e s t i n g u n l i n k wi th a rgumen t s : name01 EXPECT

"0"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 1 EXPECT

"0"
PASS

Rename d i r e c t o r y wi th a n c e s t o r d i r e c t o r y

70 Rename POSIX test results

T e s t i n g rename wi th a rgumen t s : " d i r 0 2 , pa th0 1 " EXPECT "
EINVAL"

FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 390
T e s t i n g r m d i r w i th a rgumen t s : pa th0 1 EXPECT

"0"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 2 EXPECT

"0"
PASS

Rename d i r e c t o r y wi th non empty d i r e c t o r y

T e s t i n g rename wi th a rgumen t s : d i r 0 1 , d i r 0 2 EXPECT
"−1"

PASS
T e s t i n g e r r n o f o r EEXIST or ENOTEMPTY
PASS
T e s t i n g u n l i n k wi th a rgumen t s : pa th0 1 EXPECT

"0"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 1 EXPECT

"0"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 2 EXPECT

"0"
PASS

Rename empty d i r e c t o r y wi th a n o t h e r empty d i r e c t o r y

T e s t i n g rename wi th a rgumen t s : d i r 0 1 , d i r 0 2 EXPECT
"0"

FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 448
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 1 EXPECT

"−1"
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 454
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 2 EXPECT

"0"
PASS
T e s t i n g rename wi th a rgumen t s : " d i r 0 2 , pa th0 1 " EXPECT "

EMLINK"
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 483
T e s t i n g r m d i r w i th a rgumen t s : pa th0 1 EXPECT

"−1"
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 497
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 2 EXPECT

"0"
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 498
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 1 EXPECT

"0"

71

PASS

Rename f i l e s w i t h i n d i r e c t o r i e s p r o t e c t e d wi th S_ISVTX

T e s t i n g rename wi th a rgumen t s : pa th01 , name02 EXPECT
"−1"

PASS
T e s t i n g e r r n o f o r EPERM or EACCES
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 535
T e s t i n g u n l i n k wi th a rgumen t s : pa th0 1 EXPECT

"0"
PASS
T e s t i n g u n l i n k wi th a rgumen t s : name02 EXPECT

"0"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 1 EXPECT

"0"
PASS
T e s t i n g rename wi th a rgumen t s : name02 , pa th0 1 EXPECT

"−1"
PASS
T e s t i n g e r r n o f o r EPERM or EACCES
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 577
T e s t i n g u n l i n k wi th a rgumen t s : pa th0 1 EXPECT

"0"
PASS
T e s t i n g u n l i n k wi th a rgumen t s : name02 EXPECT

"0"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 1 EXPECT

"0"
PASS

Rename f i l e w i th non e x i s t a n t f i l e

T e s t i n g rename wi th a rgumen t s : name01 , name02 EXPECT
"0"

PASS
T e s t i n g u n l i n k wi th a rgumen t s : name01 EXPECT

"−1"
PASS
T e s t i n g u n l i n k wi th a rgumen t s : name02 EXPECT

"0"
PASS
T e s t i n g rename wi th a rgumen t s : " name02 , name01 " EXPECT "

ENOENT"
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 660
T e s t i n g u n l i n k wi th a rgumen t s : name01 EXPECT

"0"

72 Rename POSIX test results

PASS
T e s t i n g u n l i n k wi th a rgumen t s : name02 EXPECT

"−1"
PASS

Rename f i l e w i th non e x i s t a n t f i l e p a t h

T e s t i n g rename wi th a rgumen t s : " pa th01 , name01 " EXPECT "
ENOENT"

PASS
T e s t i n g u n l i n k wi th a rgumen t s : name01 EXPECT

"−1"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 1 EXPECT

"0"
PASS

Rename d i r e c t o r y wi th non e x i s t a n t d i r e c t o r y

T e s t i n g rename wi th a rgumen t s : d i r 0 1 , d i r 0 2 EXPECT
"0"

PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 1 EXPECT

"−1"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 2 EXPECT

"0"
PASS

Rename f i l e w i th a name s i z e e x c e e d i n g NAME_MAX

T e s t i n g rename wi th a rgumen t s : " name01 , f i l e n a m e " EXPECT "
ENAMETOOLONG"

PASS
T e s t i n g u n l i n k wi th a rgumen t s : name01 EXPECT

"0"
PASS
T e s t i n g u n l i n k wi th a rgumen t s : f i l e n a m e EXPECT

"−1"
PASS

Rename d i r e c t o r y wi th c u r r e n t d i r e c t o r y

T e s t i n g rename wi th a rgumen t s : " . " , d i r 0 1 EXPECT
"−1"

PASS
T e s t i n g e r r n o f o r EINVAL or EBUSY
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 787

73

T e s t i n g rename wi th a rgumen t s : d i r 0 1 , " . " EXPECT
"−1"

PASS
T e s t i n g e r r n o f o r EINVAL or EBUSY
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 801

Rename d i r e c t o r y wi th p r e v i o u s d i r e c t o r y

T e s t i n g rename wi th a rgumen t s : " . . " , d i r 0 1 EXPECT
"−1"

PASS
T e s t i n g e r r n o f o r EINVAL or EBUSY
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 817
T e s t i n g rename wi th a rgumen t s : d i r 0 1 , " . . " EXPECT

"−1"
PASS
T e s t i n g e r r n o f o r EINVAL or EBUSY
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 831
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 1 EXPECT

"0"
PASS

T e s t i n g empty f i l e p a t h s

T e s t i n g rename wi th a rgumen t s : " name01 , " " EXPECT "
ENOENT"

PASS
T e s t i n g wi th a rgumen t s : name01 EXPECT

"0"
PASS
T e s t i n g rename wi th a rgumen t s : " " , name01 " EXPECT "

ENOENT"
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 869
T e s t i n g wi th a rgumen t s : name01 EXPECT

"0"
PASS

Rename two f i l e s on a d i r e c t o r y wi th no w r i t e p e r m i s s i o n

T e s t i n g rename wi th a rgumen t s : " name01 , name02 " EXPECT "
EACCES"

FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 947

Rename f i l e between two d i r e c t o r i e s , w i th and w i t h o u t w r i t e
a c c e s s

T e s t i n g rename wi th a rgumen t s : " name01 , pa th0 1 " EXPECT "
EACCES"

FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 971

74 Rename POSIX test results

T e s t i n g rename wi th a rgumen t s : " pa th01 , name01 " EXPECT "
EACCES"

FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c : 978
T e s t i n g wi th a rgumen t s : name01 EXPECT

"0"
PASS
T e s t i n g wi th a rgumen t s : pa th0 1 EXPECT

"0"
PASS
T e s t i n g wi th a rgumen t s : pa th0 1 EXPECT

"0"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 1 EXPECT

"0"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 2 EXPECT

"0"
PASS

Rename two f i l e s on a d i r e c t o r y wi th no e x e c u t e p e r m i s s i o n

T e s t i n g rename wi th a rgumen t s : " pa th0 1 , pa th 02 " EXPECT "
EACCES"

PASS

Rename f i l e between two d i r e c t o r i e s , w i th and w i t h o u t e x e c u t e
a c c e s s

T e s t i n g rename wi th a rgumen t s : " pa th01 , pa th0 2 " EXPECT "
EACCES"

PASS
T e s t i n g rename wi th a rgumen t s : " pa th02 , pa th0 1 " EXPECT "

EACCES"
FAIL t e s t s u i t e s / f s t e s t s / mimfs_fs rename / . . / f s r e n a m e / t e s t . c :

1103
T e s t i n g wi th a rgumen t s : pa th0 1 EXPECT

"0"
PASS
T e s t i n g wi th a rgumen t s : pa th0 1 EXPECT

"0"
PASS
T e s t i n g wi th a rgumen t s : pa th0 2 EXPECT

"0"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 1 EXPECT

"0"
PASS
T e s t i n g r m d i r w i th a rgumen t s : d i r 0 2 EXPECT

"0"

75

PASS

Rename f i l e s a c r o s s d i f e r e n t f i l e s y s t e m s

T e s t i n g rename wi th a rgumen t s : " name01 , pa th0 1 " EXPECT "
EXDEV"

PASS
T e s t i n g wi th a rgumen t s : pa th0 1 EXPECT

"−1"
PASS
T e s t i n g wi th a rgumen t s : name01 EXPECT

"0"
PASS

S h u t t i n g down f i l e s y s t e m MOUNTED IMFS
∗∗∗ END OF TEST FSRENAME MOUNTED IMFS ∗∗∗

Listing A.1: Rename unit test results.

76 Rename POSIX test results

Bibliography

[1] Raspberry pi wiki pages. http://elinux.org/R-Pi_Hub. Last access 10 of
July 2014.

[2] European Space Agency. Esa - operating systems. http://www.esa.int/
TEC/Software_engineering_and_standardisation/TECLUMKNUQE_
2.html. Last access 10 of July 2014.

[3] SD Association. https://www.sdcard.org. Last access 10 of July 2014.

[4] Bunnie’s Blog. On hacking microsd cards. http://www.bunniestudios.
com/blog/?p=3554. Last access 10 of July 2014.

[5] Broadcom Corporation, Broadcom Europe Ltd. 406 Science Park Milton
Road Cambridge CB40WW. BCM2835 ARM Peripherals, 2012.

[6] Technical Committee. SD Specifications Part A2 SD Host Controller Sim-
plified Specification. SD Association, version 3.00 edition, February 2011.

[7] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux De-
vice Drivers. O’Reilly, 3rd edition, February 2005.

[8] On-Line Applications Research Corporation. Rtems
git commit. http://git.rtems.org/rtems/commit/?id=
27d240e050697cf3d5b1632fafd2312c5bc26e52. Last access June
2014.

[9] John Cronin. Github repository. https://github.com/jncronin/rpi-boot.
Last access 10 of July 2014.

[10] Edisoft. Rtems centre - rtems architecture. http://rtemscentre.edisoft.pt/
index.php?module=ContentExpress&file=index&func=display&ceid=
21&meid=37. Last access 10 of July 2014.

77

http://elinux.org/R-Pi_Hub
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECLUMKNUQE_2.html
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECLUMKNUQE_2.html
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECLUMKNUQE_2.html
https://www.sdcard.org
http://www.bunniestudios.com/blog/?p=3554
http://www.bunniestudios.com/blog/?p=3554
http://git.rtems.org/rtems/commit/?id=27d240e050697cf3d5b1632fafd2312c5bc26e52
http://git.rtems.org/rtems/commit/?id=27d240e050697cf3d5b1632fafd2312c5bc26e52
https://github.com/jncronin/rpi-boot
http://rtemscentre.edisoft.pt/index.php?module=ContentExpress&file=index&func=display&ceid=21&meid=37
http://rtemscentre.edisoft.pt/index.php?module=ContentExpress&file=index&func=display&ceid=21&meid=37
http://rtemscentre.edisoft.pt/index.php?module=ContentExpress&file=index&func=display&ceid=21&meid=37

78 BIBLIOGRAPHY

[11] Raspberry Pi Foundation. Github firmare repository. https://github.com/
raspberrypi/firmware/wiki/Accessing-mailboxes. Last access 10 of July
2014.

[12] Raspberry Pi Foundation. What is a raspberry pi. http://www.raspberrypi.
org/help/faqs/. Last access 10 of July 2014.

[13] Google. Google summer of code andre marques acepted pro-
posal. https://www.google-melange.com/gsoc/project/details/google/
gsoc2014/andremarques/5668600916475904. Last access 10 of July
2014.

[14] The IEEE and The Open Group. The Open Group Base Specifications, Issue
7, IEEE Std 1003.1. 2013.

[15] ARM Ltd. Arm information center. http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ddi0360f/I1014942.html. Last access 10
of July 2014.

[16] Andre Marques. Bitbucket repository. https:
//bitbucket.org/asuol/rtems-graduation-project/src/
cd2f71c4b4db273a1fe6396197c9d38bce0873d1?at=master. Last
access 10 of July 2014.

[17] On-Line Applications Research Corporation. Getting Started with RTEMS,
4.10.99.0 edition, February 2013.

[18] On-Line Applications Research Corporation. RTEMS C User’s Guide,
4.10.99.0 edition, February 2013.

[19] On-Line Applications Research Corporation. RTEMS Development Envi-
ronment Guide, 4.10.99.0 edition, February 2013.

[20] On-Line Applications Research Corporation. RTEMS POSIX 1003.1 Com-
pliance Guide, 4.10.99.0 edition, February 2013.

[21] SD Group (Panasonic, SanDisk, Toshiba) and SD Card Association. SD
Specifications Part 1 Physical Layer Simplified Specification, version 3.01
edition, May 2010.

[22] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System
Concepts. Wiley, 8th edition, July 2009.

[23] David Welch. Github raspberrypi repository. https://github.com/
dwelch67/raspberrypi/tree/master/bootloader05. Last access 10 of July
2014.

https://github.com/raspberrypi/firmware/wiki/Accessing-mailboxes
https://github.com/raspberrypi/firmware/wiki/Accessing-mailboxes
http://www.raspberrypi.org/help/faqs/
http://www.raspberrypi.org/help/faqs/
https://www.google-melange.com/gsoc/project/details/google/gsoc2014/andremarques/5668600916475904
https://www.google-melange.com/gsoc/project/details/google/gsoc2014/andremarques/5668600916475904
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0360f/I1014942.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0360f/I1014942.html
https://bitbucket.org/asuol/rtems-graduation-project/src/cd2f71c4b4db273a1fe6396197c9d38bce0873d1?at=master
https://bitbucket.org/asuol/rtems-graduation-project/src/cd2f71c4b4db273a1fe6396197c9d38bce0873d1?at=master
https://bitbucket.org/asuol/rtems-graduation-project/src/cd2f71c4b4db273a1fe6396197c9d38bce0873d1?at=master
https://github.com/dwelch67/raspberrypi/tree/master/bootloader05
https://github.com/dwelch67/raspberrypi/tree/master/bootloader05

	Contents
	List of Figures
	Acronyms
	Introduction
	Context
	Motivation
	Objective
	Document Outline

	Real-Time Executive for Multiprocessor Systems
	Real Time Operating System (RTOS)
	Embedded Systems
	Applications
	RTEMS in Portugal
	Features
	System Architecture
	Internal Architecture
	Application Architecture

	Directory structure
	Compiling the Source Code
	Conclusions

	Rename POSIX Function Unit Test
	The RTEMS Test Suite
	Portable Operating System Interface
	POSIX.1-2008

	The Rename Specification Test Case
	The Test Case
	Test Case Unchecked Cases

	Results
	Conclusions

	Device Driver Development
	Device Drivers
	Kernel and User Space Drivers
	Concurrency and Compiler Optimization
	Major and Minor Numbers
	Driver Operations
	Time
	Hardware Communication
	Interrupt Handling
	Memory
	Memory Mapping and Direct Memory Access

	Block Devices
	File Systems
	Block Device Drivers
	Conclusions

	Raspberry Pi
	Hardware Features
	System on a Chip
	External Mass Media Controller Interface

	Raspberry Pi and RTEMS
	Booting the Raspberry Pi
	Communication with the Raspberry Pi
	Memory Registers
	Conclusions

	Secure Digital Protocol
	The Secure Digital Standard
	The Secure Digital Memory Card
	The Secure Digital Input Output Card
	Operating Modes

	The SD Bus Protocol
	SD and Application Specific Commands
	SD Card Registers

	The SD Host Controller Protocol
	SD Card Detection
	SD Clock Control
	SD Card Initialization and Identification
	SD Command Issue
	Finalize SD Command
	Transferring Data

	Conclusions

	Secure Digital Device Driver
	Implementing the Secure Digital Protocol
	card_detection
	sd_get_base_clock_hz
	sd_get_clock_divider
	sd_handle_interrupts
	sd_issue_command
	sd_issue_command_int
	sd_card_init
	disk_ioctl
	sd_ensure_data_mode
	sd_do_data_command
	SD I/O directives

	The Device Driver Table
	Testing the Device Driver
	Conclusions

	Conclusions and Future Work
	Future Work

	Rename POSIX test results
	Bibliography

