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Resumo

Nem sempre é fácil perceber como é que um sistema operativo - e software em geral - chegaram
a determinado resultado apenas olhando para este. A abordagem normal é usar registos, ou pe-
quenas impressões em locais estratégicos do código, no entanto esta abordagem não é escalável de
forma consistente e sustentada.

O propósito desta tese é o de propor e desenvolver uma ferramenta - uma ferramenta de monitor-
ização - capaz de capturar e registar a execução de uma dada aplicação com o mínimo de impacto
no contexto de sistemas embebidos de tempo-real, nomeadamente usando uma versão do sistema
operativo de tempo-real Real-Time Executive for Multiprocessor Systems (RTEMS) qualificada
para o espaço, e colocando essa informação à disposição para processamento e análise futura. Am-
bientes com múltiplos núcleos de processamento são também considerados.

O atual estado da arte em monitorização e registo de execução de software é apresentado, desta-
cando tanto exemplos da literatura como ferramentas e frameworks existentes. Usando uma im-
plementação da arquitetura proposta, a ferramenta foi testada em configurações com um ou mais
núcleos de processamento em arquiteturas sparc e arm, tendo sido capaz de registar e gravar dados
da execução de uma aplicação de exemplo, como vários níveis de detalhe.

Palavras-chave

Tracing, Monitoring, Sistema Operativo Tempo-Real, RTEMS, Sistema Embebido, Multicore.
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Resumo alargado

Enquadramento

O propósito desta tese é o de propor e desenvolver uma ferramenta - uma ferramenta de monitor-
ização - capaz de capturar e registar a execução de uma dada aplicação com o mínimo de impacto
no contexto de sistemas embebidos de tempo-real, nomeadamente usando uma versão do sistema
operativo de tempo-real RTEMS qualificada para o espaço, e colocando essa informação à dis-
posição para processamento e análise futura. Monitorização em ambientes com múltiplos núcleos
de processamento são também considerados.

O RTEMS é um sistema operativo de tempo-real livre de código aberto, usado maioritariamente em
sistemas embebidos. É usado para várias áreas e aplicações onde o tempo e os prazos de execução
são importantes, tais como as indústrias espaciais, defesa, medicina, aviação, aplicações cientificas,
entre outras. É o principal sistema operativo livre usado pela European Space Agency (ESA) e
pela National Aeronautics and Space Administration (NASA) para as suas missões espaciais.

Esta tese foi desenvolvida na Edisoft, S.A., que desenvolve e mantém uma versão do RTEMS - o
RTEMS Improvement - que é usada pela ESA nos seus satélites.

Estado da Arte

O estado da arte sobre monitorização e histórico/registo de execução é apresentado no capitulo 2.
Várias arquiteturas e abordagens são propostas. De forma resumida: Iyenghar et al [IWWP13]
propõem usar rotinas de monitorização com impacto mensurável, permitindo ter em conta o im-
pacto da monitorização nas análises de escalonabilidade; Plattner et al [PN81] destaca as limitações
crescentes dos monitores em hardware; ferramentas como o ThreadX [Loga] envia os dados de ex-
ecução na idle thread do sistema, por forma a minimizar o impacto neste.

Uma análise às ferramentas e soluções de monitorização é apresentada na secção 2.7. Apesar da
maioria usar monitores em software, ainda existem monitores em hardware a serem desenvolvi-
dos (e.g.: pela Green Hills [Hila] e Segger [SEGc]). Um detalhe importante é a visualização
destes dados: 20 dos maiores sistemas operativos usados atualmente na indústria usa a ferramenta
Tracealizer [Per] para visualização e análise dos dados recolhidos de uma execução. A ferramenta
tracecompass [Pol] é a alternativa livre open-source, usada por sistemas como o Linux e o RTEMS.
Nesta medida, as ferramentas de monitorização atuais tendem a não incluir visualizadores e pro-
cessados para os dados que capturam. Em vez disso, quando registam a execução de uma aplicação
gravam os dados num formato estandardizado (detalhado na secção 2.4) (ou convertem posterior-
mente para esse formato), que estas ferramentas depois tratam de tornar a análise desses dados
mais intuitiva e simples.

A literatura revela uma miscelânea de nomenclaturas usadas para descrever arquiteturas de mon-
itorização, e vários pontos de vista sobre o propósito de uma ferramenta de monitorização. Esta
foca-se mais na análise da execução de um sistema, e nem tanto em como essa execução é obtida.
No entanto, garantir que esses dados são obtidos com o menor impacto possível na execução da
aplicação é da maior importância para uma plataforma com recursos limitados como os usados na
área de sistemas embebidos e de tempo-real.
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Desenvolvimento

O capitulo 3 apresenta os requisitos da ferramenta desenvolvida, considerando um ambiente com
apenas um núcleo de processamento (no contexto do projeto RTEMS Qualification Extensions para
a ESA). O desenho e arquitetura da ferramenta são apresentados no capítulo 4.
Neste contexto a ferramenta foi utilizada com a plataforma GR712 da Gaisler, que possui dois
núcleos sparc leon 3 em que apenas um é utilizado (o sistema operativo não está preparado para
sistemas com mais que um núcleo), a correr o RTEMS Improvement da Edisoft S.A..
A captura dos eventos é feita recorrendo a uma funcionalidade especifica do linker da GNU is
Not Unix (GNU) para encapsulamento de funções denominada de wrap, onde uma função pode
ser substituída por outra com a mesma assinatura desde que precedida por __wrapper_. Esta
funcionalidade permite que chamadas ao sistema, por exemplo, sejam substituídas por funções
intermédias (precedidas por __wrapper_) que além de chamarem as funções originais (a função
original é acedida normalmente, precedida por __real_) registam informações sobre o contexto e
conteúdo dessa mesma chamada.

Nesta versão da ferramenta todos os eventos são guardados num buffer global de eventos, que são
posteriormente enviados para uma plataforma externa à qual o sistema está ligado por SpaceWire.
A periodicidade com que os eventos são enviados pode ser:

• em direto - o utilizador pode configurar a ferramenta para enviar um determinado número
de eventos (se os houver) a cada n microsegundos.

• quando a execução termina - imediatamente antes de terminar o sistema, todos os eventos
guardados são enviados para a plataforma externa.

Em ambos os casos é possível à aplicação a ser monitorizada forçar o envio a qualquer momento
de quantos eventos queira. Na plataforma externa os eventos são recebidos e guardados ou numa
base de dados My Structured Query Language (MySQL) ou em ficheiros Comma-Separated Val-
ues (CSV). Estes dados podem depois ser visualizados e processados posteriormente.

O capitulo 6 faz uma breve apresentação sobre sistemas com múltiplos núcleos, a sua utilização na
indústria espacial e como o RTEMS suporta este tipo de sistemas. É também apresentada uma
versão estendida da ferramenta adaptada a este tipo de sistemas, cujas diferenças são:

• Um buffer por processador/núcleo de processamento - usar um único buffer de eventos para
vários núcleos de processamento iria criar um constrangimento, já só um de cada vez poderia
colocar os seus eventos no buffer. Como cada processador passa a ter o seu próprio buffer,
este constrangimento desaparece, sem com isso aumentar os requisitos de memória (uma vez
que a memória que seria usada no buffer global é dividida pelos vários processadores);

• Formato dos eventos - num sistema com vários núcleos de processamento, cada evento além
de ter registado quando aconteceu passa também a precisar de registar onde aconteceu. Nesse
sentido foi necessário criar um campo adicional para indicar o índice do processador onde
cada evento ocorreu.

Esta versão entendida implicou alterar a versão do RTEMS utilizado para uma versão com suporte
a múltiplos núcleo de processamento e também o canal de comunicação com a plataforma externa
para usar uma porta série normal Recommend Standard 232 (RS-232), e correr num ambiente
emulado em Quick Emulator (QEMU).
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Conclusões e Trabalho Futuro

As conclusões e trabalho futuro são apresentados no capitulo 7. No final da tese foi produzido uma
ferramenta de monitorização capaz de monitorizar a execução de uma aplicação num ambiente com
um único núcleo de processamento, assim como uma extensão desta ferramenta capaz de fazer o
mesmo mas com uma aplicação a executar em múltiplos núcleos ao mesmo tempo, recorrendo a
uma versão do RTEMS com suporte a este tipo de sistema e a uma plataforma simulada. Testes
iniciais com esta extensão da ferramenta mostram que também é viável para sistemas com múlti-
plos núcleos.

Algum trabalho futuro é apresentado, do qual se destaca a necessidade de tornar os dados recolhidos
possíveis de ser visualizados numa ferramenta gráfica.
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Abstract

It can be hard to understand how an operating system - and software in general - reached a cer-
tain output just by looking at said output. A simple approach is to use loggers, or simple print
statements on some specific critical areas, however that is an approach that does not scale very
well in a consistent and manageable way.

The purpose of this thesis is to propose and develop a tool - a Monitoring Tool - capable of cap-
turing and recording the execution of a given application with minimal intrusion in the context of
real-time embedded systems, namely using a space-qualified version of the RTEMS real-time oper-
ating system, and making that information available for further processing and analysis. Multicore
environments are also considered.

The current state of the art in monitoring and execution tracing is presented, featuring both a
literature review and a discussion of existing tools and frameworks. Using an implementation of
the proposed architecture, the tool was tested in both unicore and multicore configurations in both
sparc and arm architectures, and was able to record execution data of a sample application, with
varying degrees of verbosity.

Keywords

Tracing, Monitoring, Real-Time Operating System, RTEMS, Embedded System, Multicore.
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Chapter 1

Introduction

Improving software methodologies and processes will never lead to bug free software, so there re-
mains a need for better tools that can help developers find faults before they become failures.

In the real, macroscopic physical world, the act of observing a given event is a passive occurrence.
We can not affect a physical outcome just by watching it happen. However, to observe a software
system or application, just like observing quantum particles, implies an interaction with the system
which can (and will) affect the resulting outcome.

1.1 Context

RTEMS is an open source full featured Real Time Operating System (RTOS) that supports a va-
riety of open API and interface standards, targeted for embedded systems. The RTEMS project is
managed by the On-Line Applications Research (OAR) corporation with the help of the RTEMS
user community and serves as the base operating system for many applications with real-time
needs, such as space, defense, medical, industry, aviation, and more. It is the main open source
RTOS used by NASA and ESA for their space missions, and Portugal has the only RTEMS centre
outside the United States of America, which is managed by Edisoft S.A.. The main RTEMS version
used by ESA is Edisoft’s RTEMS Improvement, a space-qualified version forked from RTEMS 4.8.

This thesis was developed at Edisoft, initially in the context of the RTEMS Qualification Extensions
project proposed by ESA to Edisoft with the purpose to add support for Military Standard 1553
(MIL-STD-1553) [Agea] and SpaceWire [Ageb] buses and also the development of a Monitoring
Tool for Edisoft’s RTEMS Improvement. The focus of this thesis is the development of this
Monitoring Tool, and then to extend it to work in a multicore configuration (not part of the scope
of the initial project).

1.2 Motivation

I have been working with RTEMS since late 2013, and have been a participant of Google Summer
of Code with the RTEMS project for two times as a student (2014 and 2015) and one time as
a mentor (2016). This project allowed me to improve my knowledge in RTEMS by working in a
professional setting with the company that developed and supports the RTEMS version used by
all European space missions, such as ESA Galileo, and gather skills on a new field that I had never
worked on: execution tracing.

1.3 Document Outline

In order to describe the work that was developed during the project, this document is structured
as follows:
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• Chapter 1 – Introduction – introduces the project and its motivations;

• Chapter 2 – State of the Art – presents an overview and discussion of the most relevant
literature and existing monitoring tools and tracing architectures, frameworks and tools;

• Chapter 3 – Monitoring Tool Requirements – presents the software requirements for the
developed monitoring tool;

• Chapter 4 – Monitoring Tool Design – presents the software design/architecture of the
developed monitoring tool;

• Chapter 5 – Monitoring Tool Testsuite – shows how the monitoring tool was tested;

• Chapter 6 – Multicore – gives a brief overview of the SMP support in RTEMS and how the
developed monitoring tool was extended to work in a multicore setting;

• Chapter 7 – Conclusions and Future Work – presents the project conclusions and some
ideas for future work on this project.
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Chapter 2

State of the Art

It can be difficult for a system’s developer or user to see and understand what an operating system
- and software in general - is doing just by looking at its outputs. Software can be analyzed either
by static or dynamic methods, where the former focus on the static aspects of the software (i.e.:
the source code) and the latter on its execution. Static methods include formal proofs of program
correctness (or the analysis of the programming language itself) while dynamic methods include
debuggers and tracing/monitoring tools.

The main difference between a debugger and a monitoring tool is that debuggers target program-
ming languages, while monitoring tools target operating systems. For instance, while a mutex is
just another program variable to a debugger, a monitoring tool must be able to recognize and
provide relevant information about it. To have this sort of system specific information with a gen-
eral purpose debugger (general purpose since it targets any program written in a certain language,
being it a simple application or a complete Operating System (OS)) the user would have to have
knowledge of where to get that information, and be able to access it.

This section details the current state of the art in the field of operating system execution monitoring.
It starts with a definition for System Monitoring, going through the methods to capture and reason
on what is going on in a live and running operating system, and what is being done to ensure that
capturing this information does not disturb (or minimally disturb) the system and its expected
outcomes.

2.1 System Monitoring

The term “Monitoring” may have slightly different meanings, depending on context. Monitoring,
also called tracing, may refer either to the act of capturing the execution data from a given system,
or the analysis of that data (either at run-time (online) or after the system shutdown (offline) or
both). Trace data refers to a complete set of events resulting of one or more system executions,
while an individual event refers to a particular change in the execution behaviour (e.g.: a specific
context switch).

Although the term “monitoring” is used, monitoring a system does not always mean plain ob-
servation as monitors may also perform actions triggered by what is being observed. This type
of monitoring occurs while the monitored system is running, and is called runtime-monitoring or
runtime checking (refer to section 2.3.1).

A Monitoring Tool consists of retrieving event data from a system’s execution for storage and/or
analysis. Figure 2.1 portraits a high level view of most monitoring system architectures:

• The monitored system has a monitor component (software and/or hardware based) to capture
the system’s execution events and send those events to be processed;
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• A processing component (usually running on a different, separate platform to reduce the
impact on the monitored system execution), which receives and stores the events and may
allow some further processing to happen on those events.

Figure 2.1: Monitoring System.

Event processing ranges from simply visualizing the events on a Graphical User Interface (GUI)
screen to verifying if the system requirements were not violated. The capture component executes
concurrently with the monitored system, while the processing part may happen long after the mon-
itored system terminated its execution (as long as the events were recorded, which must happen
while the system executes).

There are a number of techniques available to monitor a system (which will be detailed later in
this chapter), but the main drawback of doing so is the impact on the monitored system’s normal
execution. This is even more critical when the target system consists of a deeply embedded system
with limited computational and memory resources while at the same time having to perform under
strict real-time execution constraints.

A Monitoring tool is thus useful to detect race conditions, deadlocks, and similar (real-time) prob-
lems that are hard to detect with other debugging tools [HR02] [Sho04]. It can also identify when
an interrupt or context switch happened and pinpoint the timing of those events in the context of
the overall system’s operation, making it easier to detect unexpected behaviour.

The trace data collected can also be used for:

• Task scheduling analysis;

• Resource dimensioning;

• Performance analysis;

• Algorithm optimization.

The following subsections will describe the requirements and constraints that any monitoring tool
must take into account.
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Instrumentation Points

Monitoring implies adding logic to the system so its execution can be recorded for further (online
or offline) processing. To do this monitoring points are chosen in the system, such that when the
system’s execution reaches those points the monitoring code is executed and that event is recorded.
Monitoring points bind and direct the monitoring system towards specific points of interest, allow-
ing for a better understanding of the system’s execution flow. A monitoring point might be the
system’s context switch function, so every context switch in the system is logged and appropriately
labelled, whilst identifying which tasks are being scheduled in and out of which queue in the CPU.
The process of adding this recording logic to a system’s source or object code is called instrumen-
tation, and the places where it is invoked are referred to as monitoring or instrumentation points.
Placing and choosing the location of these monitoring points can be done manually by the system’s
developer or user or dynamically through an automatic tool. Automatic tools may use previous
execution traces to decide where to instrument the system, or evaluate what to instrument while
the system is running [DGR04].

Placement

The monitoring logic which is invoked when an instrumentation point is hit may execute on the
same system that is being monitored, or on a separate machine. The location where this logic
executes is called placement. It can be classified as online, if the monitoring logic executes on the
same machine, or offline if it executes on a separate machine.

Platform

The monitor part of the monitoring tool can be based on software, hardware, or a mix of the two.
A software monitor requires the instrumentation of the system’s code, while a hardware based
monitor will (possibly) connect to the system and listen to the system’s bus for clues on what is
happening on the system. Monitoring platforms are further explained in section 2.2.

2.2 Capturing System Execution Trace Data

Monitoring a system or application execution is prone to disturb the said execution, as learning
about its inner operations requires the installation of probes (ranging from actual physical probes
to software probes in the form of instrumented code) on the monitored system. Any probe used
for monitoring must meet two basic requirements:

• domain - the probe shall be able to capture information on the type of events that are
expected to be monitored;

• performance - adding the probe to the system shall not disturb (over an acceptable overhead)
the intended behaviour of the monitored system.

To capture the execution of a system it has to be observed. Monitoring tools can be classi-
fied [IWWP13] into the following categories, representing different approaches to monitoring:

• Hardware based (may also be referred to as on-chip monitoring);

• Software based;

• Hybrid - a mixed approach.

These approaches are detailed below.
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2.2.1 Hardware Based

Hardware based monitoring makes use of additional hardware attached to the system to capture
and retrieve execution data. It was clear since the beginning of system monitoring (in the fifties
and sixties) that in order not to disturb the timing of the monitored process, separate hardware
would be required [PN81], as hardware monitors reduce (or remove) the impact of monitoring on
a system’s performance [DGR04].
Old fashioned hardware based monitoring [IWWP13] [WH07] uses physical probes connected to
the system’s hardware to get a glimpse of its execution. Early hardware based monitors made use
of oscilloscope probes, logic analyzers and In-Circuit Emulator (ICE)s. In-Circuit Emulator are
hardware devices that take the place of the CPU, effectively replacing it. It has the advantage
that since it will execute the instructions the real chip would execute, it can monitor all states of
the process. These have lost popularity due to the increasing complexity of processors.

Nowadays instead of probing the chip pins hardware monitors probe the system bus. A System
on a Chip (SOC) (a common architecture for embedded systems) includes in the same chip all
the core components that compose a computer, such as the processor(s), memory and graphics.
All these components are connected together through a bus (e.g.: Advanced Microcontroller Bus
Architecture (AMBA), Peripheral Component Interconnect (PCI)), so to trace the execution of a
system running on top of a SOC an on-chip monitor listens and records the traffic flowing on the
bus.
While SOC hardware is increasingly difficult (if not impossible) to monitor with the classical
hardware monitors, they are usually embedded with a hardware trace unit capable of listening to
the bus traffic and storing it on a dedicated hardware trace buffer with minimal impact on the
performance. Access to the trace data can be done via fast debugging interfaces such as Joint Test
Action Group (JTAG) from a separate machine.
The problem with bus tracing is that it is only capable of capturing instructions going from memory
to the CPU, or between the CPU and some peripheral device. Instructions stored on the CPU
cache, for instance, are invisible to the on-chip monitor.

2.2.2 Software Based

Software based monitoring relies in the instrumentation of source code in order for the program
to output information about its internal state [WH07]. Instrumentation points can be placed
as comments or annotations in the target’s software that can then be replaced automatically by
monitoring code (this may also be called inline monitoring [HR02]).
Through instrumentation it is possible to monitor every aspect of a software system, but at a
price: having a software monitor executing concurrently in the same machine will delay its normal
execution. This means that the system being monitored is not the same system being deployed
and used in the real-world, and that can easily render the monitoring tool useless.

As stated in section 2.1, one of the purposes of a monitoring tool is to detect complex system
behaviour such as race conditions. These can easily be masked with the introduction of delays
on the system, meaning that an instrumented system may not reveal the problems it is supposed
to find. It has been suggested in the literature [WH07] that the software probes (i.e.: the instru-
mented code) is left in the system to avoid this, but this approach is frowned upon in an embedded
environment where resources are scarce.
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An important concept for software monitors is time and space partitioning [NPP15], as it fosters
independence between tasks. This allows monitors and system tasks to coexist in the same system
while keeping the system tasks timing properties (e.g.: their worst-case execution times) as well as
their private data to remain private. Each partition is isolated regarding to space (i.e.: memory
accesses from other partitions) and timing (i.e.: tasks executing on a partition do not have an
impact on the timing characteristics of tasks running on another partition) operations, so it is
clear that software monitors should be isolated from the system via space and time partitioning.

2.2.3 Hybrid

Hybrid based monitoring refers to the simultaneous use of hardware and software monitors, com-
plementing their strengths and weaknesses [WH07]. Hardware monitors have low to zero impact
on the monitored system, however they are restricted to external I/O interfaces or instructions
passing through the system’s bus. Software monitors can monitor every aspect of the system, but
with an additional overhead. Using the two approaches at the same time permits to off-load the
software monitor from monitoring the events that the hardware monitor is able to monitor without
affecting the system, while the software monitor allows the capture of events that are unreachable
to the hardware monitor.

2.3 Analysis and Processing Trace Data

As previously noted, a system’s execution can be analyzed, viewed and/or processed while the
system is still executing (runtime monitoring), or after the system has terminated its execution
(offline monitoring). These two approaches are discussed below. At this stage the captured events
may be dispatched to a separate verification process on the target (monitored) system, or sent via
a communication interface to be processed on a separate machine.

Note that the approaches shown in this section only refer to the visualization/processing of trace
data, as offline monitoring for instance (as explained below in section 2.3.2) may still involve a
runtime component for event transmission to a remote machine.

2.3.1 Runtime Monitoring

For a while now formal methods have been used in the analysis and validation of real-time systems,
more exactly to models of those systems [HR02]. They provide mathematical proof of a system’s
correctness, but those verifications do not apply to the system’s actual implementation, as they are
often much more detailed than their models and usually do not strictly follow it. Software systems
are also increasing their complexity making it unfeasible to get a complete formal verification of a
running system (the exception are microkernels such as seL4, although they make some assump-
tions such as the compiler, which is assumed to be correct [KEH+09]).

Runtime monitoring analyses a given system during its execution, allowing the monitoring system
or another entity (e.g.: a developer or user) to have a better view of what the system is doing
at a given time and possibly intervene and correct unintended behaviour. System requirements
compliance can be checked on the fly and measures can be taken to restore the system back to a
safe state, reducing deployment times as the number of tests the system otherwise would have to
go through can be shortened.
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Even with a full campaign of tests planned and run on a system, there is always the possibility
of something going wrong. Budget restrictions can impose limits on the number and scope of the
tests to the more likely causes of error, or to test only the critical part of the system. In that sense,
a runtime monitoring tool working as a software-fault safety net can make sure that the intended
system properties are preserved even in a catastrophic event. If the system operates in a hard to
reach location where it is difficult or impossible for someone to go and recover the system (e.g.:
deep sea or in the outer space) it can avoid system loss.

The basis of a runtime monitoring tool is the software requirements and properties of the monitored
system [DGR04] [WH07], as they provide insight on the expected outcomes and behaviours of the
system. The monitor uses these properties to try and discover faults in the system before they
become failures (by running concurrently with the system, analyzing every computational step).
To do this a specification language (e.g.: Linear-time Temporal Logic) is used to formally describe
the system requirements and properties in a format that can be processed by the monitor, namely
by defining the system’s properties as sequences of computational states.
The main purpose of a runtime monitor is to detect faults in a system’s execution trace. When a
fault is detected the monitor can provide further information on its cause either to the system or
user (fault diagnosis), or even assist the recovery of the system to a safe state by:

• directing the system to a correct state (forward recovery);

• reverting to a previously correct state (backward recovery).

Actions might include logging the event and warning the user, calling recovery methods or simply
stopping or rebooting the system. To capture the events most runtime verification tools require
software instrumentation of the target system [WH07].

2.3.2 Offline Monitoring

One way to reduce the monitoring impact on performance is to reduce the number of actions.
Offline monitors capture the event data while the system is executing, but only process or trans-
mit that data when the system terminates its execution [WH07]. This approach is only suitable
for debugging and post-mortem analysis, as comparatively with runtime monitoring the monitor
never interacts with the system directly, but rather it is the system which writes the events on the
monitor event buffer (which is also the case with runtime monitoring).

Depending on the system, the events may be analyzed/viewed in the same machine or sent to
another machine. Depending on the number of events being traced and memory available, this
method may not be feasible for all applications, as all events will have to be stored until the system
terminates. If the buffer fills up events will be lost either by overwriting old events or by dropping
new ones. One way to deal with this is to transmit events periodically with a monitor (i.e.: a
thread or process, usually with the lowest priority on the system) running alongside the monitored
system as an approach halfway between runtime and offline monitoring [NPP15].

2.4 Trace Data Format

As with any data transferred between two systems, the format or structure used has to be known
to both sides. The monitored system has to produce trace data in a way such that a human or
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machine can parse that data and understand the message.

Iyenghar et al [IWWP13] developed and used a simple protocol-like trace format (figure 2.2) where
each packet has a header and a payload. The rationale behind this design is that it promotes
compactness (one event, one packet) and extensibility (more data can be easily added to an event)
while reducing the number of operations on the monitored system.

Figure 2.2: Trace format defined by Iyengar et al [IWWP13].

Apart from the trace formats defined and used by single projects, other formats are shared by
different systems and applications. By standardizing the trace formats it is possible to develop
system-independent trace processing tools, making it easier to develop monitoring tools as the
system only has to provide the events/trace data.

The current standard on trace formats is the CTF, which organizes the trace data as multiple
streams of binary events [Eff]. In this context a stream holds an ordered sequence of events, out of
a specified group. It is up to the system being monitored to decide how many streams it will use
and which events go on which stream, but at least one has to be provided: the metadata stream.
The metadata stream is a file named “metadata” which contains a description of the trace data
layout. This file is written in Trace Stream Description Language (TSDL), a C-like language to
describe (non exhaustive):

• streams - such as the header and associated events;

• events - stream header, event name, id within the stream, data fields;

• system clock configuration - frequency.

2.5 Measuring the Impact on Performance

To measure performance the following metrics can be used [Hil05]:

• Performance profiling - how much time the system is spending on each function;

• Task profiling - how much time the system is spending on each task;

• A-B timing - how much time the system takes between two points in the system code;

• Response to external events - the time required for the system to respond to an external
event (e.g.: interrupt);

• Task deadline performance - measures the time each task takes to reach its deadline (consid-
ering a multi-tasking application).

As with any other measurement, it is important to ensure that the measuring activity does not
have affect the measured value (or at least the impact is known and can be accounted for). For
software monitors these metrics can be retrieved by instrumenting specific portions of the monitor
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to measure how much time the monitor takes in each step (e.g.: identify an event to be of a certain
type or store an event). While the process of getting these measurements would increase the total
overhead of the monitoring tool, they are likely to only have to be taken once, so this instrumented
code can be left out or even removed after the measurements are taken. It is also possible that
these can not be retrieved all in one go, as the code blocks being measured must not contain other
code blocks being measured as well, since those measurements would include an overhead that will
not exist on the final monitoring system.

As an example: if a certain function call takes around 100µs, and the monitor takes 2µ to identify
that operation as a certain type of event and storing it on an internal buffer, then we have the
monitoring tool overhead per each event of that type.
Other approaches may involve external hardware: Iyenghar et al [IWWP13] used a logic analyzer
to measure the performance of their monitoring tool.

2.6 Literature Review

This section compiles the ideas and points of view of several authors on monitoring techniques.
These are discussed in the section 2.8.

2.6.1 Architectures Used or Proposed

Iyenghar et al [IWWP13] proposed a generic software-based monitor that is independent of the
underlying RTOS. Their architecture is simple:

1. The RTOS communicates with the monitor via its own framework;

2. The trace data is then sent to the host platform via a debug interface, such as JTAG or
RS-232.

To reduce the communication overhead they have devised a frame, protocol-like format (see fig-
ure 2.2) for the trace data with the following characteristics:

• Compactness - minimize the data transfer size;

• Minimum number of operations on the target - minimize the impact on the target’s execution;

• Extensibility - keeping the format simple enough so that more events can be added for
transmission in the future.

The underlying RTOS invokes the monitor functions whenever an event is consumed. The event
is then stored in a memory buffer and later sent to the host platform during the idle cycles of the
CPU by the monitor. The buffer is configurable at compilation time, namely:

• buffer size;

• behaviour on buffer overflow. The buffer can discard events if full, and when it does the host
is notified that events were lost.

They measured the time taken to store a 23 byte event on the buffer and sending it to the host
via a RS-232 interface at 50µs. The memory requirements of their prototype are at 1061 bytes in
Read-Only Memory (ROM) and 135 bytes in Random-Access Memory (RAM) (total memory size
of ≈ 1 KiloByte (KB)).
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On the host side they have created a QT Framework (QT) GUI application where the incom-
ing trace data is decoded (from the protocol-like format) and shown as Unified Modeling Lan-
guage (UML) sequence and timing diagrams.

Watterson et al [WH07] state that a modular approach is more suitable for a runtime monitoring
tool for use on an embedded environment, where events are captured on the monitored system and
sent to a verification process running on a separate machine, reducing execution overhead.

Nelissen et al [NPP15] recognize that space and time partitioning is important to ensure that a
runtime monitor does not affect the monitored system, either in its behaviour or by propagating
faults. They propose a monitoring architecture where each event type (rather than each monitor)
has their own buffer to store the events. Each buffer works on a single producer, multiple consumer
fashion (each reader has a pointer to the oldest event that they have not read yet), and since the
events read are never removed (the buffers are circular, so new events overwrite older ones) the
access to the buffer does not need any further synchronization and a single event can be of use to
multiple readers. Readers feeding the same monitor synchronize the monitor event timeline via a
synchronization variable storing the timestamp of the last event read, so the readers can determine
which event should be read and sent to the runtime monitor first.

2.6.2 Uses for the Trace Data

Monitors output trace data usually for plain visualization of the execution flow. However, there
are other more ambitious uses for this data.

Iyenghar et al [IWWP13] propose a framework where trace data is used to create a model (e.g.:
UML interaction diagrams) of the system, which can then be used to generate test cases (model-
based test cases) in real-time. The authors consider that these tests can help in regression testing
and test coverage, while at the same time can act as an initial template for the tester to create
more tests manually.

2.7 Existing Tools

This section introduces some of the most relevant monitoring tools being used in the embedded
systems industry, and how the different operating systems (RTOS) capture execution data and
make that data available to a monitoring tool. As detailed previously in section 2.2, a popular
approach to capture system events is to instrument the system’s software with code to capture
execution data. The software instrumentation techniques vary from system to system, as different
systems have different purposes and objectives.

2.7.1 Trace Compass

Trace Compass [Pol] is an open-source trace visualization tool developed by PolarSys, an Eclipse
Industry Working group. It is based on the Eclipse framework, and available as a plug-in or as a
Rich Client Platform (RCP) application.

The interface (see figure 2.3) consists of two timelines: one for processes and another for resources
(such as CPU cores, or Interrupt Request (IRQ)s). As for statistics it only shows the percentage
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of each event in the overall system event count. As for each event it shows:

• Timestamp;

• CPU core where it executed;

• Event type (e.g.: function call or return);

• Event contents (i.e.: call arguments or return value).

Figure 2.3: Printscreen of Trace compass showing a sample LTTng CTF trace.

2.7.2 Tracealizer

The main feature of Tracealizer’s [Per] interface is the event timeline. It is possible to navigate
through the various instances of each event (next and previous), as well as zoom (adjusting the
timing resolution) and filter events. Event categories are called actors, of which each events is an
instance of.
The interface (figure 2.4) provides information of each actor, such as:

• Instance start and finish clock ticks;

• Clock tick of the next execution;

• Who triggered its execution, and what else was triggered;

• Execution time (minimum, average and highest);

• CPU usage;

• What events this instance triggers.

There are also 20 other specialized views for blocking times, scheduling intensity, and others.
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Figure 2.4: Printscreen of Tracealizer for VxWorks interface.

2.7.3 National Instruments

National Instruments [Ins] provides their users with access to system resource usage information.
Their system gives programmatic access to a target system’s available resources, allowing their
user’s software to change its behaviour if a given resource reaches a certain threshold. This also
allows the creation and use of custom monitoring and logging tools, feeding on the CPU and
memory usage information given by the system.
To aid the developers in the low-level analysis of the system, namely identifying memory allocation,
analyzing thread activity as well as execution and timing data per CPU in the system, National
Instruments provides a graphical trace viewer tool, the Real-Time Trace Viewer. This tool displays
the percentage of CPU time spent executing threads by priority level, the percentage of idle CPU
time and the percentage of CPU time devoted to Interrupt Service Routine (ISR)s.

2.7.4 ThreadX

Express Logic ThreadX RTOS [Loga] performance can be analyzed with intrusive or non-intrusive
methods. The system provides two important variables:

• _tx_thread_current_ptr - pointer to the address of the currently running thread. If null
the system is idle;

• _tx_thread_system_state - if non-zero an interrupt is being processed.

By monitoring only these two variables it is possible to monitor thread execution, idle time and
interrupt processing in the whole system using the following rules:

1. thread execution starts when _tx_thread_current_ptr becomes non-NULL;

2. thread execution stops when _tx_thread_current_ptr becomes NULL;

3. if during a thread’s execution _tx_thread_system_state becomes non-zero, the time during
which is has a non-zero value is associated with interrupt processing;
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4. when no thread is executing the system is in idle.

These variables can be monitored with a logic analyzer, meaning that this information can be
retrieved without interfering with the system’s execution (non-intrusive approach). A single thread
can be monitored if its address is known. Each thread also has a counter which is incremented every
time it is scheduled to execute, making it possible to detect situations of excessive preemption.
If a logic analyzer is not available it is also possible to instrument ThreadX scheduler, function
return and interrupt management functions to capture the same data. Instrumentation implies
the placement of a few assembly instructions, and the use of a dedicated high resolution timer.
The estimated overhead impact is in the order of 5% per context switch or interrupt.
ThreadX also has built-in system tracing capabilities, activated by enabling a single flag (EVENT_TRACE).
If tracing is enabled ThreadX will store execution data in a circular buffer. The application can
control the size, location and contents of the traces, and may also insert custom events through an
API. To analyze and view this information Express Logic provides the TraceX tool [Logb].
Trace data is sent to an host machine after execution (off-line monitoring) or during execution when
a breakpoint is hit. The circular buffer stores up to a certain number of recent events, making
them available for inspection in the event of a system malfunction or an user defined breakpoint.
The following events can be traced in both single and multi-core systems:

• context switches;

• preemptions;

• system interrupts;

• application-specific (custom) events.

The events are labelled with an application time-stamp and identified with the active thread, so
they can be displayed in the correct time sequence of events and properly identified. Tracing can
be enabled or disabled dynamically to avoid filling the memory with events when the system is
working correctly. TraceX also signals when a deterministic or non-deterministic priority inversion
occurs.
For performance analysis, it also makes available:

• CPU usage;

• profiling information (time spent in each task, idle or processing interrupts;

• statistics (number of context switches, time slices, preemptions, interrupts, ...);

• thread stack usage.

TraceX is available for Windows, with a perpetual license for three developers costing $5,000.

2.7.5 Segger embOSView

Segger provides along with their RTOS embOS [SEGa] a profiling tool called embOSView [SEGb].
This tool communicates with the kernel via communication (Universal Asynchronous Receiver/-
Transmitter (UART) or JTAG) ISRs installed in the system to collect timing information on the
system’s tasks, or CPU load, being the only instrumented code in the system. This means that
if the profiling tool is not connected to the system the communication ISRs are never called, so
they can be left on a production system without affecting its execution (except on the system size
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footprint). For tracing they also provide a hardware module (J-link or J-trace), as an alternative
to system instrumentation.

Segger also provides a free trace viewer tool called System View [SEGc] that works with their own
trace format, which is saved in a binary package. The format specifies event categories as contexts.
This allows an easier analysis of each event type, as it is possible to go to the next or previous
event of that context easily, get data on that specific event (e.g.: Task Run: Runs for 6µs (1089
cycles)), data on all events of that context (frequency, minimum run time, maximum run time, ...)
and corresponding terminal output (if applicable). The events can also be viewed in a timeline
interface (figure 2.5) with adjustable timing resolution, and how much CPU each context is using.

Figure 2.5: Printscreen of Segger System View.

2.7.6 Green Hills Software

Green Hills trace tool [Hilb] features two types of monitors:

• Hardware - trace capture from a hardware trace port;

• Software - capturing events from a system executing on a simulator.

For the hardware monitor [Hila] they provide an hardware device called the SuperTrace Probe

which connects to a monitoring target via JTAG at 300 MHz speeds, capable of storing up to
4GigaByte (GB) of events with a timestamp resolution of 7.5 ns.
Events can then be viewed on a graphical interface as part of their development Integrated Devel-
opment Environment (IDE).

2.7.7 RTEMS Trace

The RTEMS project provides a software based monitoring solution, targeting not only to its
kernel, but also applications and third party packages [Cora]. Its architecture is based on a
linker feature called wrappers, which can replace all calls to a given function at linkage time,
calling instead a __wrap_ symbol prefixed version of that function (e.g.: a wrapper function for
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rtems_semaphore_create would be __wrap_rtems_semaphore_create). This new function is de-
fined and provided to the linker (so it does not require modifications to the original source code),
which will execute on behalf of the original function. This behaviour is perfect for code instrumen-
tation, as this new function can record that the function was called (and any associated metadata,
such as the input arguments or return value) and still invoke the original function via the __real_
symbol prefixed version of the original function. In addition to the wrappers this tool also uses a
separate module called the capture engine. This module can be configured to monitor only certain
types of events, and contains a buffer where the events can be stored.

Using this linker feature the RTEMS Trace tool needs two inputs:

1. the functions to be monitored, such that they can be wrapped by the linker;

2. the wrapper function implementation for the monitored functions.

The RTEMS community uses an application (rtems-tld) to configure and compile the capture
engine and instrumented code (the wrappers), and link it with the application to be monitored.
Configuration and wrapper function implementations are provided as one or more .ini files. The
trace data is retrieved either by printing to screen/console (e.g.: through a serial connection) or
by writing to a file, which can be converted to CTF (using the babeltrace tool) and displayed with
the Trace Compass tool (refer to section 2.7.1).

2.8 Discussion

A disadvantage of software monitors is that the instrumentation required has an impact on the
system performance. The monitoring logic added to the system is usually of significant proportions,
and the resulting overhead is easily unacceptable for real-time applications. On top of that, the
monitoring harness is usually removed when the monitoring activities end, so the system being
monitored is not the system being deployed.
Iyenghar et al [IWWP13] propose a solution for this in their paper:

• Use a generic monitoring routine with measurable overhead (e.g.: knowing before hand how
many microseconds it takes to monitor a semaphore being obtained);

• Modular approach where the monitoring logic is independent of the communication interface
between the target and host;

• Minimize the communication overhead between the target and host systems, by optimizing
the encoding and decoding of the transmitted data.

This approach has a few problems for deeply embedded systems. They consider measurable over-
head to be minimally intrusive, because the overhead is then considered to be bounded and for
that reason it can be accounted for, for instance, in schedulability tests. Since the monitoring
overhead is known this allows the monitoring harness to stay in the deployed system. However, it
still means that every operation being monitored will take longer than necessary, and the memory
and timing requirements of the system will increase. This is acknowledged in the paper, where the
authors state that the inclusion of their monitor decreased the number of events the system could
handle by a factor of 8.92 using a RS-232 interface.
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For communication they propose that events should be sent only in the idle cycles of the CPU.
This is also the approach used to send events to the TraceX tool running on the host platform
in the ThreadX system. This however increases the monitor impact on the system’s code, as it
requires the idle thread to be instrumented to check and send events if there are any. A lower im-
pact option would be to have the monitor create a task with the lowest priority possible with that
same code to check the buffer and send the events. The only possible downside to this alternative
is that the system must not use any task at this priority level, otherwise that task execution will
compete with the monitor task.

Having the monitoring logic independent from the communication interface is important for em-
bedded systems, as different systems may use different communication interfaces. Using a modular
approach allows for more embedded platforms to be used with the monitor, as new communication
interfaces can be easily added.
The format used to transfer data between the target and host platforms is one key area of software-
based monitoring where time can be easily saved, by reducing the amount of data transferred.

Regarding the impact of software-based monitors on the monitored system, Iyenghar et al [IWWP13]
consider that the use of on-chip monitoring alongside a software-based monitor could minimize the
monitoring overhead.
For hardware monitors the problem is the lack on visibility on the system’s software states. Al-
ready in 1981 Plattner et al [PN81] noted in their paper that commercial hardware monitors were
starting to lose access to the complete sequence of states of a target process.

For Nelissen et al [NPP15] the problem with software monitors is that they are mostly imple-
mented as sequential blocks of code, meaning that only one thread can be performing monitoring
activities at a time. They consider run-time monitors where the monitors share the same machine
as the monitored application. In this scenario a task (i.e.: a system/application thread) writes
events to a system-wide global buffer, which is then accessed by the monitors (i.e.: monitoring
threads performing run time verifications). In this situation only one thread can be either reading
or writing to the buffer, meaning that a thread may be waiting for another task to write an event
B to the buffer before it can write an event A. To avoid this they propose a monitoring framework
where each event has its own buffer.

This problem does not apply, however, to systems where the monitors are running on a separate
machine. In this scenario the events are transmitted to the monitors by a communication inter-
face such as Transmission Control Protocol/Internet Protocol (TCP/IP), rather than having the
monitors accessing the buffers directly. In this scenario it is likely that only one communication
interface will be used, so it does not matter how much more buffers there are in the system as
there is only one way out for the events.

As for the existing tools presented in section 2.7, it is clear that monitoring tools are an important
piece of an operating system development toolkit. While most use software monitors, there are still
some hardware monitors being developed and used (Green Hills and Segger for instance, although
they also provide software monitors). As for the event visualization, the tracealizer tool is used by
20 major operating systems currently in use in the industry today, while trace compass is the open
source alternative for open source projects such as Linux or RTEMS. Both these visualization
tools make use of standard trace formats (refer to section 2.4) to decode the trace data, meaning
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that the graphical part can be made system independent. This is the reason why most operating
systems no longer provide a graphical viewer for their monitoring solutions: they just generate
standardized trace data which can then be viewed on third-party interfaces.

Trace compass has less features than tracealizer, but since it is free and open source it would be
advantageous to use it as the trace visualizer for the system.

2.9 Conclusions

A study of the literature shows that there is quite a mixture of concepts related to monitoring
architectures, and what is the purpose of a monitoring tool. The literature focus mainly on the
analysis of the system execution, and not so much on the retrieval of those traces in a way that
does not impact the execution. For a real-time system running on a resource constrained embedded
platform the capture side of monitoring is of utmost importance.

The concepts presented in this chapter will serve as a base for the next chapters where the design
and implementation of the proposed monitoring tool will be detailed.
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Chapter 3

Monitoring Tool Requirements

This chapter presents the analysis and specification of the software requirements for the developed
monitoring tool, taking into account the presented state of the art and the thesis context within
Edisoft. These requirements target the sparc leon3 architecture in single core (the multicore version
of the tool is described in chapter 6), using SpaceWire (a serial protocol developed by ESA for space
applications [Ageb]) as the communication channel and Edisoft’s RTEMS Improvement version as
the target system on top of a Gaisler’s GR712RC development board.

3.1 Purpose

The purpose of the developed monitoring tool is to support the application developer with infor-
mation collected from the execution of the application. The collected data encompasses thread
scheduling, thread stack usage, resource usage, RTEMS configuration tables, generated interrupts
and RTEMS API calls. The monitoring tool is made of two components running on different
platforms: the stub and the host. Figure 3.1 illustrates how these components interact: the stub
runs in the same platform as the application and RTEMS kernel, collecting information about the
runtime execution, which is afterwards transmitted to the host.

Figure 3.1: Monitoring Tool Platform.

The target platform, which integrates the stub component, requires a communication channel (in
this case over SpaceWire, but the version described in chapter 6 uses serial - RS-232) and its
memory and temporal requirements are directly related with the number of logs monitored. The
monitoring tool interacts with both the RTEMS kernel and the application in order to monitor the
events generated. This interaction creates a spatial and temporal overhead as it will take memory
and CPU time to write the logs, in addition to the time it takes for the transmission of information
from the target to the host.

Since the number of events received by the host can be very large (e.g.: if the stub is sending logs at
1000 Hertz (Hz), each log occupying 48 bytes, the minimum non-volatile memory size required to
save all the information during 1 hour amounts to 165 MegaByte (MB)), a DataBase Management
System (DBMS)(MySQL) is used to save and manage the data. The data may also be stored in
CSV files as an alternative format.
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3.2 Constraints

The Monitoring tool is limited by the communication channel speed and its computational pa-
rameters, and both the target and the host platforms require a SpaceWire interface in order to
send/receive the trace data. The tool is also limited by the speed and memory capabilities of the
target platform.

Due to these limitations it is important to offer the application developer flexibility in the con-
figuration phase of the monitoring tool, such that it can be easily tailored to a given embedded
platform. On top of this, the application being monitored may also be constrained: to capture
interrupts the rtems_interrupt_catch primitive is used, meaning that the monitored application
must not use this function for the interrupt vectors that the monitored tool was configured to
monitor as it will replace the monitoring ISR placed by the monitoring tool. The monitored appli-
cation may, however, use the rtems_interrupt_catch for interrupts vectors that the monitoring
tool was not configured to monitor.

3.3 Host Logical Model Description

The main goal of the monitoring host is to receive the logs from the communication channel and
store them for the user. There are two different storage alternatives:

1. MySQL Database - stores the logs into a MySQL database;

2. CSV file - stores the logs into a CSV file.

The log reception is performed by a specialized java thread, which will be continuously waiting for
a message on the communication channel (see figure 3.2).

Figure 3.2: Monitoring Tool Host Functional Architecture.

As soon as the message is received, the corresponding log is saved in a ring buffer. This ring buffer
will be implemented in RAM memory and will have a limited size (not user configurable). This
ring buffer is accessed through a producer/consumer protocol (i.e.: if the buffer is full, the thread
which is putting logs into the buffer is blocked; if the buffer is empty, the thread getting the logs
is blocked).

The thread that has the highest priority (the Java API allows thread priority definition) exists
to ensure that the messages received on the communication’s channel buffer (controlled by the
operating system - namely the driver controlling the channel) are moved as soon as possible to
the monitoring host’s ring buffer to avoid data loss over a communication channel’s buffer overflow.

A medium priority thread continuously removes the logs from the ring buffer and writes them
either to a database (MySQL) or to CSV files (see figure 3.2). This thread has a lower priority
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than the Receive Messages Thread to lower interference. The size of the ring buffer must be
typically large (∼1000 logs) to give enough margin for message bursts. The host can only handle
relatively small amounts of data at a time (e.g.: 106 events).

3.4 Transmission Interface Logical Model Description

Data transmission is a very time consuming task, especially for the target system. To give more
flexibility to the user and application, the transmission parameters are user configurable. There
are two modes through which the information can be transmitted: on-line and off-line modes.

In the on-line mode, the logs are sent periodically by a monitoring tool task running in the target
platform. The information is received by the host and is processed while the target is still running.
In the off-line mode, the information is kept on the target system until the application ends exe-
cution (i.e.: when the rtems_shutdown directive is invoked), and only then the data is transmitted.

The on-line mode is not only suited for a live stream of events, but also to ensure that a long
running application can be monitored throughout the whole execution, as the off-line mode would
require larger amounts of memory to store a corresponding large amount of events. On the other
hand the off-line mode has the advantage of less interference of the application, as the events are
only sent at the end.

3.5 Specific Requirements and Constraints

This section presents the software requirements for the developed monitoring tool, in the context
of the work performed at Edisoft. These requirements originate in the statement of work presented
to Edisoft by ESA for the developed monitoring tool, and intend to specify (among all the possible
alternatives for its implementation) a monitoring tool for Edisoft’s RTEMS Improvement version
as the target system on top of a Gaisler’s GR712RC development board (sparc leon3 architecture,
in single core configuration), with SpaceWire as the communication channel. These requirements
do not apply to the multicore version presented in chapter 6, as it uses the arm architecture instead
of sparc, and RS-232 instead of SpaceWire for communication.

The requirements presented in this section follow the structure defined in the table 3.1.

Requirement Identifier This field contains the requirement’s unique identifier.
Brief Description This field contains the requirement’s name.
Description This field contains the full description of the requirement.

Table 3.1: Description of the Requirements Template.

The notation used for Software requirements analysis is UML. This notation was chosen due to
its popularity, ease to use and high readability capabilities. The requirements within this chapter
have been identified with the following label: MT-SR-X-N, which stands for:

• MT - Monitoring Tool;

• SR - Software Requirement;

21



• X - This identifier shall refer to the requirement identification and shall refer to the subsection
where the requirement is defined;

• N - This identifier shall refer to the requirement number.

The X identifier can be divided into the following categories:

• FUNC - Functional requirements;

• PER - Performance requirements;

• TEST - Testability requirements;

• INST - Installation requirements;

• DITC - Design, Implementation and Test Constraints requirements;

• VAL - Verification and Validation requirements.

The combination of the X and N parameters shall define a unique identifier for each requirement,
that is, two requirements cannot have the same X and N parameters.

3.5.1 Functional Requirements

The functional requirements for the monitoring tool are presented in tables 3.2, 3.3, 3.4, 3.5, 3.6,
3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20 and 3.21.

Requirement Identifier MT-SR-FUNC-0010
Brief Description RTEMS Extension Manager Events Monitor
Description The Monitoring tool shall be able to monitor events reported using the

RTEMS User Extension Manager.

Table 3.2: Requirement MT-SR-FUNC-0010.

Requirement Identifier MT-SR-FUNC-0020
Brief Description Monitoring Other Events
Description The Monitoring tool shall be able to monitor scheduling events other

than those reported by the RTEMS User Extension Manager.

Table 3.3: Requirement MT-SR-FUNC-0020.

Requirement Identifier MT-SR-FUNC-0030
Brief Description Interrupts Monitor
Description The Monitoring tool shall be able to monitor the interrupt generation

for the LEON 3 (GR712RC).

Table 3.4: Requirement MT-SR-FUNC-0030.

Requirement Identifier MT-SR-FUNC-0040
Brief Description User Calls to RTEMS APIs Monitor
Description The Monitoring tool shall be able to monitor the calls from the user

specified RTEMS APIs that occur in the user’s application.

Table 3.5: Requirement MT-SR-FUNC-0040.
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Requirement Identifier MT-SR-FUNC-0060
Brief Description Stack Monitor
Description The Monitoring tool shall be able to monitor the task stack usage at

task context switch.

Table 3.6: Requirement MT-SR-FUNC-0060.

Requirement Identifier MT-SR-FUNC-0070
Brief Description RTEMS Configuration Monitor
Description The Monitoring tool shall monitor the following RTEMS configuration

tables defined by the user:

• RTEMS Workspace address;

• RTEMS Workspace size;

• Number of device drivers;

• Number of microseconds per clock tick;

• Number of clock ticks per timeslice.

Table 3.7: Requirement MT-SR-FUNC-0070.

Requirement Identifier MT-SR-FUNC-0080
Brief Description Log Identification Data - Tasks, Semaphores and Messages Queues
Description The Monitoring tool shall report tasks, semaphores and messages

queues by their address, symbol and rtems id.

Table 3.8: Requirement MT-SR-FUNC-0080.

Requirement Identifier MT-SR-FUNC-0085
Brief Description Log Identification Data - Interrupts
Description The Monitoring tool shall report interrupts by their vector in the In-

terrupt Vector Table.

Table 3.9: Requirement MT-SR-FUNC-0085.

Requirement Identifier MT-SR-FUNC-0087
Brief Description Application Debug Message
Description The Monitoring tool shall provide a primitive for the application to log

a custom message.

Table 3.10: Requirement MT-SR-FUNC-0087.
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Requirement Identifier MT-SR-FUNC-0090
Brief Description Task Monitor
Description The Monitoring tool shall identify when each task was executed, when

it became ready, when it finished its processing and its priority over
time.

Table 3.11: Requirement MT-SR-FUNC-0090.

Requirement Identifier MT-SR-FUNC-0130
Brief Description Types of Events to Monitor
Description The Monitoring tool shall be able to enable/ disable event capturing

by a set of user defined functions. It shall be able to filter the following
events:

• Task schedulability events (e.g. task create event)

• Task stack events

• RTEMS API calls (each manager):

– Task Manager

– Interrupt Manager

– Clock Manager

– Timer Manager

– Semaphore Manager

– Message Queue Manager

– Event Manager

– IO Manager

– Error Manager

– Rate Monotonic Manager

– User Extension Manager

Table 3.12: Requirement MT-SR-FUNC-0130.

Requirement Identifier MT-SR-FUNC-0140
Brief Description Task Monitor Threshold Definition
Description The user shall be able to define an upper and lower task priority thresh-

old. The tool shall log the events generated by tasks within this limit
(stack usage, task events).

Table 3.13: Requirement MT-SR-FUNC-0140.

Requirement Identifier MT-SR-FUNC-0150
Brief Description Log Timestamp
Description The Monitoring tool shall provide time stamping capabilities for each

log.

Table 3.14: Requirement MT-SR-FUNC-0150.
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Requirement Identifier MT-SR-FUNC-0170
Brief Description Transfer Types
Description The Monitoring tool shall support both on-line and offline modes for

log transfer.

Table 3.15: Requirement MT-SR-FUNC-0170.

Requirement Identifier MT-SR-FUNC-0180
Brief Description On-Line Log Transfer
Description In the on-line mode the logs shall be transmitted periodically through

a periodic task (see MT-SR-DITC-0030).

Table 3.16: Requirement MT-SR-FUNC-0180.

Requirement Identifier MT-SR-FUNC-0190
Brief Description Off-Line Log Transfer
Description In the off-line mode the logs shall be transmitted when the application

ends (when the rtems_shutdown directive is called).

Table 3.17: Requirement MT-SR-FUNC-0190.

Requirement Identifier MT-SR-FUNC-0195
Brief Description Force Log Transfer
Description A primitive shall be available in order to force the transfer of a target

number of logs that are still stored in the stub.

Table 3.18: Requirement MT-SR-FUNC-0195.

Requirement Identifier MT-SR-FUNC-0200
Brief Description SpaceWire as a Transmission Channel
Description The Monitoring tool shall transmit the logs from the target platform

to the host platform through a SpW interface.

Table 3.19: Requirement MT-SR-FUNC-0200.

Requirement Identifier MT-SR-FUNC-0210
Brief Description Store Logs
Description The Monitoring tool shall save the logs received from the target plat-

form to database or CSV file in the host platform.

Table 3.20: Requirement MT-SR-FUNC-0210.

Requirement Identifier MT-SR-FUNC-0220
Brief Description Enable/ Disable Monitoring Tool
Description It shall be possible to enable and disable the Monitoring tool in execu-

tion time.

Table 3.21: Requirement MT-SR-FUNC-0220.
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3.5.2 Performance Requirements

The performance requirements for the monitoring tool are presented in tables 3.22 and 3.23.

Requirement Identifier MT-SR-PER-0010
Brief Description Maximum Temporal Overhead of an Event Saving
Description The Monitoring tool shall add no more than 5% of temporal overhead

to save an event.

Table 3.22: Requirement MT-SR-PER-0010.

Requirement Identifier MT-SR-PER-0020
Brief Description Maximum Temporal Overhead of an Event Transmission
Description The Monitoring tool shall add no more than 5% of temporal overhead

for each event transmitted.

Table 3.23: Requirement MT-SR-PER-0020.

3.5.3 Testability Requirements

The testability requirements for the monitoring tool are presented in tables 3.24, 3.25 and 3.26.

Requirement Identifier MT-SR-TEST-0010
Brief Description Test Naming Rule
Description The test name shall be unique and follow this naming rule:

mne_tt_nnnaa.ext, where:

• mne: mnemonic code

• tt: type of test

• nnn: test number

• aa: subtest number

• ext: extension

Table 3.24: Requirement MT-SR-TEST-0010.

Requirement Identifier MT-SR-TEST-0020
Brief Description Execution Report Format
Description The test suite shall generate the execution report in text format.

Table 3.25: Requirement MT-SR-TEST-0020.

Requirement Identifier MT-SR-TEST-0030
Brief Description Test pass/fail Criteria
Description Test case shall pass successfully if all its steps are successful. One step

is considered successful if the obtained output is equal to the expected
output.

Table 3.26: Requirement MT-SR-TEST-0030.
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3.5.4 Design, Implementation and Test Constraints

The design, implementation and test constraints for the monitoring tool are presented in tables
3.27, 3.28, 3.29, 3.30, 3.31, 3.32, 3.33, 3.34, 3.35 and 3.36.

Requirement Identifier MT-SR-DITC-0020
Brief Description Stub Programming Language
Description The Monitoring tool stub shall be implemented in C language.

Table 3.27: Requirement MT-SR-DITC-0020.

Requirement Identifier MT-SR-DITC-0030
Brief Description Monitoring Tool Transmission Parameters Configuration
Description The user shall be able to configure the following communication pa-

rameters (on the on-line mode):

• Monitoring tool periodic task priority;

• Monitoring tool periodic task period;

• Number of messages to send per period.

Table 3.28: Requirement MT-SR-DITC-0030.

Requirement Identifier MT-SR-DITC-0040
Brief Description Stub Memory Buffer
Description The memory buffer on the target system shall be implemented through

a ring buffer. Each time a log is read, it shall be automatically deleted
from the buffer. See MT-SR-DITC-0050.

Table 3.29: Requirement MT-SR-DITC-0040.

Requirement Identifier MT-SR-DITC-0050
Brief Description Ring Buffer Configuration
Description It shall be possible to configure the ring buffer used by the target com-

ponent of the Monitoring tool in the following aspects:

• Buffer size;

• Buffer start address;

• Buffer overwrite settings when at full capacity:

– Overwrite oldest logs;

– Do not overwrite oldest logs, new logs are lost.

Table 3.30: Requirement MT-SR-DITC-0050.
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Requirement Identifier MT-SR-DITC-0060
Brief Description Store Logs on MySQL Database
Description The Monitoring tool on the host side shall save the logs to a MySQL

database.

Table 3.31: Requirement MT-SR-DITC-0060.

Requirement Identifier MT-SR-DITC-0070
Brief Description Maximum Size of the Transmitted Messages
Description The messages transmitted from the Monitoring tool stub to the host

shall occupy a maximum of 61 bytes. Each message sent/received will
correspond to a log.

Table 3.32: Requirement MT-SR-DITC-0070.

Requirement Identifier MT-SR-DITC-0080
Brief Description Interrupt Catch Constraint
Description The rtems_interrupt_catch primitive shall not be used by the target

application if interrupt events are being monitored.

Table 3.33: Requirement MT-SR-DITC-0080.

Requirement Identifier MT-SR-DITC-0090
Brief Description Timestamp Accuracy
Description The Monitoring tool shall manage timestamps of events and timing

statistics with the accuracy of a microsecond or better (target CPU
clock cycle).

Table 3.34: Requirement MT-SR-DITC-0090.

Requirement Identifier MT-SR-DITC-0100
Brief Description Configure Host Address in the Stub
Description The user shall be able to configure the SpW host address in compilation

time.

Table 3.35: Requirement MT-SR-DITC-0100.

Requirement Identifier MT-SR-DITC-0110
Brief Description SpW Hardware Host Encapsulation
Description The host SpW device shall be properly encapsulated in order to ease

port to other environment.

Table 3.36: Requirement MT-SR-DITC-0110.

3.5.5 Installation Requirements

The single installation requirement for the monitoring tool is presented in table 3.37.
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Requirement Identifier MT-SR-INST-0010
Brief Description Stub Installation
Description The result of compilation and linking of the stub with the application

shall be an executable binary file. The user shall copy this binary file
to the memory of the final target.

Table 3.37: Requirement MT-SR-INST-0010.

3.5.6 Verification and Validation

The verification and validation requirements for the monitoring tool are presented in tables 3.38
and 3.39.

Requirement Identifier MT-SR-VAL-0010
Brief Description Target Board
Description The Monitoring tool shall be tested with a GR712RC-BOARD.

Table 3.38: Requirement MT-SR-VAL-0010.

Requirement Identifier MT-SR-VAL-0020
Brief Description SpaceWire Interface
Description A SpW interface is required in both the target and host systems in

order to transfer the logged information.

Table 3.39: Requirement MT-SR-VAL-0020.

3.6 Conclusions

This chapter presented an overview of the developed monitoring tool and its requirements: func-
tional, performance, testability, design, implementation and test constraints, installation and ver-
ification and validation. The following chapters use this specification to present the monitoring
tool design 4, implementation A and testing 5.
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Chapter 4

Monitoring Tool Design

This chapter describes the monitoring tool design, based on the requirements presented in the
previous chapter, and follows the UML design method with the use of sequence diagrams to aid
the system comprehension:

• for static design aspects, UML package and class diagrams are used;

• for dynamic design aspects, sequence diagrams are used.

The Monitoring tool is composed of two different components: stub and host.
The stub runs in the same platform as the application and the RTEMS kernel. The RTEMS version
used/tested with the unicore version of the monitoring tool is the Edisoft’s RTEMS Improvement
(connecting with the host via SpaceWire).

The monitoring target is based on the Cobham-Gaisler GR712-RC development board (spar-
c/leon3 fault-tolerant dual-core) while the Monitoring host runs on a Windows 7 machine (SCOC3
Electrical Ground Support Equipment (EGSE)) lent to Edisoft by ESA, which contains a Teletel
SpaceWire interface card. To operate the SpaceWire card a web service is used (Teletel iSAFT
RunTime Environment (RTE)), acting as the driver.

4.1 Architectural Design

This section describes the Monitoring tool architecture. Figure 4.1 illustrates the relationship
between the major components of the Monitoring tool.

Figure 4.1: Relationship between the Monitoring Tool Major Components.

It is composed of two components: the Host platform and the Stub platform. The stub collects
the information about the runtime execution environment to a local buffer (in this case only one
buffer is used, as it is intended for a single core system. The version described in chapter 6 uses
one buffer per core), which will be sent to the host platform:

• when the application execution terminates;
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• periodically - according to a scheduling policy defined by the user (periodic task with user
defined period and priority);

• at any time during execution, when ever the monitored application calls a primitive to flush
a number of events.

The host node receives the collected information and temporarily saves it to a local ring buffer.
The purpose of this buffer is to reduce the possibility of a buffer overflow at the communication
channel device driver level, which is filled every time a new byte (or a number of bytes, if the device
has an hardware buffer to diminish the CPU interruptions, such as serial communication boards
with First In, First Out (FIFO) UART 16550A [Pro], which has 16 byte hardware FIFOs where the
data is stored before interrupting the CPU - only one interruption every 16 bytes) arrives. Even
if the driver has a configurable buffer size, their buffer is filled via a CPU interrupt, meaning that
any data that is received by the communication channel is stored on the driver’s buffer, however
any application wanting to access that data is dependent on the system scheduler to have access
to that resource. In that sense, and as depicted in figure 3.2, a high priority thread continuously
fetches data from the device driver’s buffer into the host node’s buffer (which size is controlled
by the host), from which a medium priority thread (as to reduce the interference with the higher
priority thread) continuously checks the ring buffer to see if there are any new messages. If so, it
removes them (to free more space in the buffer) and places them in the database or into a CSV
file (the user shall choose between one of the two before stating the host).

The monitoring tool is not integrated within the RTEMS source code: the application developer
may choose to use (or not) the Monitoring tool by linking the appropriate object files. This allows
an efficient implementation of the tool since a change in the default parameters (e.g. task priority
thresholds, etc) only requires a recompilation of the tool, instead of the RTEMS library or appli-
cation. The linkage of the monitoring tool with the application and RTEMS library is performed
through the use of “wrappers” (ld –wrap symbol) supported by the linker. This allows the moni-
toring tool to intercept specific RTEMS primitives, such as rtems_initialize_early (to startup
the monitoring tool), _Thread_Clear_state (which can ready a task) or rtems_task_create (a
RTEMS API call).

4.2 Stub Static Architecture

This section discusses the monitoring stub architecture. Figure 4.2 shows the class diagram of the
Monitoring tool stub.
The stub is divided into the following components:

• Buffer;

• Task;

• Manager;

• API;

• InterruptInterceptor;

• DefaultConfiguration;

• SpwTransmitter;
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Figure 4.2: Monitoring Tool Stub Class Diagram.

• RTEMSAPICallsMonitor;

• TaskEventMonitor;

• TaskStackEventMonitor;

• RTEMSConfigurationMonitor.

4.2.1 Buffer

Description:

The Buffer component contains the events captured by the tool and that are ready to be sent
(derived from requirement MT-SR-FUNC-0150 and MT-SR-FUNC-0170). It is composed of a
ring buffer, accessed by multiple producers and one consumer (where one of the producers may
be from an interrupt source). The dimension of the buffer is defined in the DefaultConfiguration
component. Regarding the performance requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-PER-0010.

Regarding the design requirements, this architecture component has to conform to the constraints
imposed by the requirements:
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• MT-SR-DITC-0020;

• MT-SR-DITC-0040;

• MT-SR-DITC-0050;

• MT-SR-DITC-0070;

• MT-SR-DITC-0090.

Regarding the verification and validation requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-VAL-0010.

Interface with other Architecture components:

The Buffer component provides an interface (refer to table 4.1) which allows writing events on the
buffer and sending the registered events from the buffer to the host.

Interface Signature Interface Purpose Architectural Components
that use the Interface

ptrTimeline_event time-
line_start_write_event(eventType type);

This function writes
the initial fields of
the event (time in-
stant and type).

RTEMSAPICallsMonitor
TaskEventMonitor
TaskStackEventMonitor
InterruptInterceptor

void timeline_commit_write_event(); Announces that the
event has been writ-
ten.

RTEMSAPICallsMonitor
TaskEventMonitor
TaskStackEventMonitor
InterruptInterceptor

uint32_t timeline_send_events(uint32_t
events2Flush)

Sends the events
stored in the ring
buffer through the
communication
interface.

Manager
Task
API

void timeline_send_message(uint8_t
*message, unsigned int size);

Sends a message
through the commu-
nication interface.

RTEMSConfigurationMonitor

void timeline_send_sync_message(); Sends the synchro-
nization message
through the commu-
nication interface.

Manager
Task
API

Table 4.1: Monitoring Stub Buffer Interface.

4.2.2 Task

Description:

The Task component represents a periodic task that sends the events contained in the Buffer to the
SpwTransmitter. It has a user defined period, priority and number of messages to send within each
period that can be defined in the DefaultConfiguration package (derived from requirements MT-SR-
FUNC-0170 and MT-SR-FUNC-0180). Regarding the performance requirements, this architecture
component has to conform to the constraints imposed by the requirements:
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• MT-SR-PER-0020.

Regarding the design requirements, this architecture component has to conform to the constraints
imposed by the requirements:

• MT-SR-DITC-0020;

• MT-SR-DITC-0030;

• MT-SR-DITC-0070.

Regarding the verification and validation requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-VAL-0010.

Interface with other Architecture components:

The Task component provides the periodic task (refer to table 4.2) needed to send the stored events
to the host in online mode

Interface Signature Interface Purpose Architectural Components
that use the Interface

void timeline_task(rtems_task_argument
dummy)

The Monitoring task. Manager

Table 4.2: Monitoring Stub Task Interface.

4.2.3 Manager

Description:

The Manager component manages the initialization and shutdown of the tool components. If the
Monitoring tool is being used in offline mode then the manager sends all the application events
stored in the Buffer component to the Host before the shutdown. In online mode it starts the task
component to send the events periodically (derived from requirements MT-SR-FUNC-0170 and
MT-SR-FUNC-0190). Regarding the performance requirements, this architecture component has
to conform to the constraints imposed by the requirements:

• MT-SR-PER-0020.

Regarding the design requirements, this architecture component has to conform to the constraints
imposed by the requirement:

• MT-SR-DITC-0020;

• MT-SR-DITC-0070.

Regarding the verification and validation requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-VAL-0010.
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Interface Signature Interface Purpose Architectural Components
that use the Interface

void timeline_initialize(); This function initial-
izes the Monitoring
tool.

RTEMS

Table 4.3: Monitoring Stub Manager Interface.

Interface with external Architecture components:

The Manager component provides an interface (refer to table 4.3) to RTEMS that is not used by
the Monitoring tool itself. This interface allows the Monitoring tool to be initialized by RTEMS.

4.2.4 API

Description:

The API component provides a set of functionalities to the programmer through which the applica-
tion can enable or disable the tool at runtime (derived from requirement MT-SR-FUNC-0220), force
the transmission of a target number of messages (derived from requirement MT-SR-FUNC-0195)
and allow the application to log custom debug messages (derived from requirement MT-SR-FUNC-
0087). Regarding the performance requirements, this architecture component has to conform to
the constraints imposed by the requirements:

• MT-SR-PER-0020.

Regarding the design requirements, this architecture component has to conform to the constraints
imposed by the requirements:

• MT-SR-DITC-0020.

Regarding the verification and validation requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-VAL-0010.

Interface with external Architecture components:

The API component provides an interface (refer to table 4.4) to the application that is not used
by the Monitoring tool itself. This interface allows the application to interact with the Monitoring
tool.

4.2.5 InterruptInterceptor

Description:

The InterruptInterceptor component contains the interrupt interceptor to catch interrupt events.
The interrupt types to monitor are defined in the DefaultConfiguration component (derived from
requirements MT-SR-FUNC-0030 and MT-SR-FUNC-0085). Regarding the performance require-
ments, this architecture component has to conform to the constraints imposed by the requirement:

• MT-SR-PER-0010.
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Interface Signature Interface Purpose Architectural Components
that use the Interface

void monitoring_enable (int); Enable or disable the
monitoring activities
during runtime.

Application

boolean time-
line_write_user_event(uint32_t mes-
sage)

Allows the applica-
tion to log a custom
message.

Application

int monitoring_flush(uint32_t total) Sends a given num-
ber of logged mes-
sages to the monitor-
ing host.

Application

Table 4.4: Monitoring Stub API Interface.

Regarding the design requirements, this architecture component has to conform to the constraints
imposed by the requirements:

• MT-SR-DITC-0020;

• MT-SR-DITC-0080.

Regarding the verification and validation requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-VAL-0010.

Interface with other Architecture components:

The InterruptInterceptor component provides an interface (refer to table 4.5) to monitor interrupts.

Interface Signature Interface Purpose Architectural Components
that use the Interface

void timeline_initialize_interrupts(); Initializes the inter-
rupt event monitor-
ing.

Manager

Table 4.5: Monitoring Stub Interrupt Interceptor Interface.

4.2.6 DefaultConfiguration

Description:

The DefaultConfiguration component contains the user defined default tool configuration param-
eters (derived from requirement MT-SR-FUNC-0130 and MT-SR-FUNC-0140).
Regarding the design requirements, this architecture component has to conform to the constraints
imposed by the requirements:

• MT-SR-DITC-0020;

• MT-SR-DITC-0030;

• MT-SR-DITC-0050;

• MT-SR-DITC-0100.
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Regarding the verification and validation requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-VAL-0010.

Interface with other Architecture components:

The DefaultConfiguration component provides the default Monitoring tool configuration. This
component allows including or removing each filter/ monitoring to satisfy the user needs.

4.2.7 SpwTransmitter

Description:

The SpwTransmitter component contains the needed SpW transmitter functionalities (derived
from requirement MT-SR-FUNC-0200). Regarding the performance requirements, this architecture
component has to conform to the constraints imposed by the requirement:

• MT-SR-PER-0020.

Regarding the design requirements, this architecture component has to conform to the constraints
imposed by the requirements:

• MT-SR-DITC-0020;

• MT-SR-DITC-0070;

• MT-SR-DITC-0100.

Regarding the verification and validation requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-VAL-0010;

• MT-SR-VAL-0020.

Interface with other Architecture components:

The Transmitter component provides the interface (refer to table 4.6) which allows transmitting
the collected information through SpaceWire to the host.

Interface Signature Interface Purpose Architectural Components
that use the Interface

int monitoring_spw_connect(); Connects to the tool
host.

Manager

void monitoring_write_spw(uint8_t vec-
tor[] , unsigned int dim);

Writes a message to
the host.

Buffer

Table 4.6: Monitoring Stub SpW Interface.
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4.2.8 RTEMSAPICallsMonitor

Description:

The RTEMSAPICallsMonitor component contains the wrappers to log the RTEMS API calls
(derived from requirements MT-SR-FUNC-0010, MT-SR-FUNC-0020, MT-SR-FUNC-0040 and
MT-SR-FUNC-0080). The RTEMS API creates an interface for task, interrupt, clock, timer,
semaphore, message queue, event management, I/O, fatal error, rate monotonic and user extension
managers. Regarding the performance requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-PER-0010.

Regarding the design requirements, this architecture component has to conform to the constraints
imposed by the requirement:

• MT-SR-DITC-0020.

Regarding the verification and validation requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-VAL-0010.

Interface with other Architecture components:

The RTEMSAPICallsMonitor component provides the wrappers for the RTEMS API managers.
For each manager there are a set of wrappers used by the target application which use the interfaces
MT-ADD-0001 and MT-ADD-0005 from the Buffer component to register the logs.

4.2.9 TaskEventMonitor

Description:

The TaskEventMonitor component contains the wrappers to log the task events (derived from
requirements MT-SR-FUNC-0080, MT-SR-FUNC-0090 and MT-SR-FUNC-0140). Regarding the
performance requirements, this architecture component has to conform to the constraints imposed
by the requirement:

• MT-SR-PER-0010.

Regarding the design requirements, this architecture component has to conform to the constraints
imposed by the requirement:

• MT-SR-DITC-0020.

Regarding the verification and validation requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-VAL-0010.

Interface with external Architecture components:

The TaskEventMonitor component provides an interface (refer to table 4.7) to RTEMS that is not
used by the Monitoring tool itself. This interface allows RTEMS to log task events.
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Interface Signature Interface Purpose Architectural Components
that use the Interface

boolean timeline_task_event (rtems_tcb
*current_task , rtems_tcb *new_task);

Stores a task event
for the task. The
event can be creat-
ing, starting, deleting
or switch.

RTEMS

Table 4.7: Monitoring Stub Task Event Monitor Interface.

4.2.10 TaskStackEventMonitor

Description:

The TaskStackEventMonitor component contains the wrappers to log the task stack events (de-
rived from requirement MT-SR-FUNC-0060 and MT-SR-FUNC-0140). Regarding the performance
requirements, this architecture component has to conform to the constraints imposed by the re-
quirement:

• MT-SR-PER-0010.

Regarding the design requirements, this architecture component has to conform to the constraints
imposed by the requirement:

• MT-SR-DITC-0020.

Regarding the verification and validation requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-VAL-0010.

Interface with other Architecture components:

The TaskStackEventMonitor component provides an interface (refer to table 4.8) to monitor task
stacks.

Interface Signature Interface Purpose Architectural Components
that use the Interface

void timeline_init_stack(rtems_tcb
*thread);

Initializes the task
stack filling it with a
predefined pattern.

TaskEventMonitor

void timeline_write_stack_event(rtems_tcb
*thread);

Writes a stack event
to the buffer from the
parameter thread.

TaskEventMonitor

Table 4.8: Monitoring Stub Task Stack Event Monitor Interface.

4.2.11 RTEMSConfigurationMonitor

Description:

The RTEMSConfigurationMonitor component contains the wrappers to log the RTEMS Configu-
ration tables (derived from requirement MT-SR-FUNC-0070). Regarding the performance require-
ments, this architecture component has to conform to the constraints imposed by the requirement:
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• MT-SR-PER-0010.

Regarding the design requirements, this architecture component has to conform to the constraints
imposed by the requirement:

• MT-SR-DITC-0020.

Regarding the verification and validation requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-VAL-0010.

Interface with other Architecture components:

The RTEMSConfigurationMonitor component provides an interface (refer to table 4.9) to retrieve
the RTEMS Configuration table information.

Interface Signature Interface Purpose Architectural Components
that use the Interface

void timeline_send_configuration_message();Sends the configura-
tion message through
the communication
interface.

Manager
Task
API

Table 4.9: Monitoring Stub RTEMS Configuration Monitor Interface.

4.3 Host

This section discusses the host architecture. Figure 4.3 illustrates the class diagram of the host
side of the Monitoring tool.
As depicted, the host is divided into the following main components:

• Receiver;

• Database;

• Main;

• Util.

4.3.1 Receiver

Description:

The Receiver component contains the classes to connect the host to the stub using the commu-
nication medium (SpaceWire) and receive raw events which contain the information about each
event monitored by the stub (derived from requirement MT-SR-FUNC-0200).
Regarding the design requirements, this architecture component has to conform to the constraints
imposed by the requirement:

• MT-SR-DITC-0070;

• MT-SR-DITC-0110;
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Figure 4.3: Monitoring Tool Host Class Diagram.

Regarding the verification and validation requirements, this architecture component has to conform
to the constraints imposed by the requirement:

• MT-SR-VAL-0020.

Interface with other Architecture components:

The Receiver component provides an interface (refer to table 4.10) to retrieve the monitored data
gathered with the stub. This data will be supplied to the Database component so it can be stored
either in a database or a CSV file.

Interface Signature Interface Purpose Architectural Components
that use the Interface

public class SpWReceiver; Class that reads the
received data from
the SpaceWire com-
munication interface.

Main

Table 4.10: Monitoring Host Receiver Interface.

4.3.2 Database

Description:

The Database component contains the classes to connect to the database, including creating,
deleting and accessing the database, and to write data in the CSV files, including creating the files.
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Each execution is stored on a separate database or CSV file directory (derived from requirement
MT-SR-FUNC-0210).

Regarding the design requirements, this architecture component has to conform to the constraints
imposed by the requirement:

• MT-SR-DITC-0060.

Interface with other Architecture components:

The Database component provides an interface (refer to table 4.11) to manage the storage mediums
(database or CSV files) and provides an interface to store the received information.

Interface Signature Interface Purpose Architectural Components
that use the Interface

public class DatabaseWriter; This class contains
the management fa-
cilities to access the
database. It de-
fines the names of the
database tables and
has functions to cre-
ate and connect to
the database and to
create tables

Main

public class CsvWritter; This class contains
the management fa-
cilities to access the
CSV files. It defines
the names of the CSV
files and has func-
tions to create direc-
tories and files, in-
cluding writing to the
files.

Main

Table 4.11: Monitoring Host Database Interface.

4.3.3 Main

Description:

The Main component cannot be directly traced to a requirement, but is needed to connect all the
other components: it parses the configuration for the host and starts the Receiver and Database
services.

Interface with other Architecture components:

The Main component provides an entry point to start the Monitoring tool host, so there are not
any architectural components that use this interface.
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4.3.4 Util

Description:

The Util component cannot be directly traced to a requirement, but is needed because it contains
auxiliary methods and classes used by other components.

Interface with other Architecture components:

The Util component provides an interface (refer to table 4.12) with several useful functions such as
the ring buffer class which stores the events temporarily (until they are inserted into the database
or CSV file). It also makes available a set of raw types to store the events retrieved by the Receiver
component.

Interface Signature Interface Purpose Architectural Components
that use the Interface

public SynchronousRingBuffer(int capac-
ity);

Create a ring buffer
to store the retrieved
data.

Main

public void putObject(Object obj); Places a new object
inside the ring buffer.

Receiver

public Object removeObject(); Removes an object
from the ring buffer.

Database

public static short unsignedByte-
ToShort(byte input);

Converts an un-
signed byte to a
signed short.

Receiver

Table 4.12: Monitoring Host Util Interface.

4.4 Dynamic Architecture - Monitoring Tool Stub

This section describes the dynamic architecture of the Monitoring tool stub, which introduces some
temporal overhead in the following stages:

• during the initialization phase;

• when it is saving the information about an event;

• when it is sending the collected information to the host machine.

The sequence diagram in figure 4.4 describes how the tool is initialized.
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Figure 4.4: Monitoring Tool Initialization Sequence Diagram.

The following subsections describe how and when the logging is performed, how the data is trans-
mitted to the host platform and how the clock stamping is performed in order to get a greater
accuracy.

4.4.1 Logging

This subsection is subdivided into subsections that further describe how the logging is performed
and how it affects the application at a temporal level. The “filter event” condition (and similars)
describe the condition that is analyzed in order to save or not the event. If “filter event” is true
then the event is not saved. If “filter event” is false, then the event is saved. The same is valid for
“filter task” and others.
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4.4.1.1 Interrupt Generation Logging

This subsection discusses how an interrupt event is logged by the monitoring tool. As depicted in
figure 4.5, when a monitored interrupt occurs the RTEMS kernel calls a function which corresponds
to an ISR interceptor. If the interrupt vector is configured to be monitored, the interrupt event will
be recorded into the monitoring tool buffer twice: when the application ISR starts executing and
when the application ISR finishes executing (creating a slight temporal overhead during interrupt
processing).

Figure 4.5: Monitoring Tool Interrupt Logging Sequence Diagram.

This interrupt wrapping mechanism is possible through the rtems_interrupt_catch directive,
which allows the tool to replace the current interrupt vector ISR handler with a new one (the
monitoring tool ISR interceptor). The monitoring tool ISR logs the interrupt event and calls the
original ISR handler that was replaced. This gives more flexibility to the monitoring tool user by
making the interrupt monitoring transparent to the application code, but does not work if the ap-
plication installs a new ISR (or calls the rtems_interrupt_catch directive) for an interrupt vector
that is being monitored, as it would replace the ISR interceptor and then the monitoring tool would
be unable to log those events (an usually seldom occurrence since the establishment of application
ISR occurs during device driver initialization, which is performed prior to the initialization of the
monitoring tool).

4.4.1.2 Task Scheduling Logging

The Task scheduling logging is performed when a task changes state. This can occur during a task
dispatching routine (the heir task switches to the executing state while the current task switches to
the ready/blocked/suspended/timed state), by a RTEMS API call (e.g. a rtems_semaphore_release
can unblock another task) or by a timer expiration (a task expediting event). Figure 4.6 illustrates
the task state transitions monitored by the Monitoring tool.
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Figure 4.6: Monitored RTEMS Task State Transitions.
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Table 4.13 illustrates the mapping between the RTEMS task states and the reduced set of states
represented in figure 4.6. Figure 4.7 represents the Task Scheduling sequence diagram.

RTEMS task state (as defined in states.h) Monitoring tool task state
STATES_READY “Ready”
STATES_DORMANT “Dormant”
STATES_SUSPENDED “Suspended” or “Blocked and Suspended”
STATES_TRANSIENT Not implemented
STATES_DELAYING “Timed” or “Timed and Suspended”
STATES_WAITING_FOR_TIME “Timed” or “Timed and Suspended”
STATES_WAITING_FOR_BUFFER “Blocked” or “Blocked and Suspended”
STATES_WAITING_FOR_SEGMENT “Blocked” or “Blocked and Suspended”
STATES_WAITING_FOR_MESSAGE “Blocked” or “Blocked and Suspended”
STATES_WAITING_FOR_EVENT “Blocked” or “Blocked and Suspended”
STATES_WAITING_FOR_SEMAPHORE “Blocked” or “Blocked and Suspended”
STATES_WAITING_FOR_MUTEX “Blocked” or “Blocked and Suspended”
STATES_WAITING_FOR_CONDITION_VARIABLE “Blocked” or “Blocked and Suspended”
STATES_WAITING_FOR_JOIN_AT_EXIT “Blocked” or “Blocked and Suspended”
STATES_WAITING_FOR_RPC_REPLY “Blocked” or “Blocked and Suspended”
STATES_WAITING_FOR_PERIOD “Timed” or “Timed and Suspended”
STATES_WAITING_FOR_SIGNAL “Blocked” or “Blocked and Suspended”

Table 4.13: Mapping between RTEMS and Monitoring Tool Task States.

Figure 4.7: Monitoring Tool Task Scheduling Logging Sequence Diagram.

4.4.1.3 RTEMS API Call Logging

The RTEMS API call logging is performed in the context of the calling task. When a RTEMS
API call is performed, it calls the RTEMSAPICallMonitor as illustrated in figure 4.8 and records
the event of when the call was performed. Similarly, when the function ends, the RTEMSAPICall-
Monitor is also addressed to record the event of when the RTEMS API call finished.
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Figure 4.8: Monitoring Tool RTEMS API Call Logging Sequence Diagram.
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4.4.1.4 Task Stack Usage Logging

The task stack usage logging is performed during a task context switch as illustrated in figure 4.9.
The maximum stack usage of the current task (the task that is going to relinquish the CPU) is
determined (starting at the higher or lower stack memory address - depending if the stack grows
up or down - and finding the first word that does not match the stack pattern) and logged. Only
the maximum stack usage is possible to calculate since the stack pattern is replaced as the stack
grows.

Figure 4.9: Monitoring Tool Stack Usage Logging Sequence Diagram.

4.4.1.5 RTEMS Configuration Logging

The RTEMS configuration is only logged a single time per execution (right after the synchronization
message), as the RTEMS configuration does not change during runtime. Configuration includes
RTEMS workspace (the memory region used to allocate space for objects created by RTEMS, such
as semaphores, tasks, queues, ... [On-15]) start address, size, number of loaded drivers, number of
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microseconds per clock tick and number of clock ticks per timeslice (the message format used to
store the configuration is shown as event type 6 in figure 4.15).

4.4.2 Log Transmission

The log transmission has two modes: online and offline. In both modes it is also possible for the
application to force the transmission of a number of logs at any time. The sequence diagram in
figure 4.10 shows the execution flow in case online or offline modes are enabled.

Figure 4.10: Monitoring Tool Event Transmission Sequence Diagram.

In the online mode the tool creates a task that periodically sends the logs through the com-
munication medium. The user can define the priority, period and the total number of logs to
send per period of the additional task created and used in online mode. In the offline mode the
rtems_shutdown primitive transmits all the collected events through the communication medium
after disabling further events to be monitored, and prior to calling the real rtems_shutdown prim-
itive. On both modes the application can force the transmission of logs by simply calling an
available primitive to transmit a target number of logs to the host.

4.4.3 Clock Update

Each event is timestamped with the clock tick and microsecond of when the monitored event
occurred. The source for this is a secondary timer initialized before the drivers (i.e.: in the
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monitoring stub wrapper for the rtems_IO_Initialize_all_drivers), which is reset to zero and
reloaded every second, creating a 1 second clock tick. The ticks and microseconds elapsed at any
time during execution are updated via the clock update mechanism, which is described in the
sequence diagram shown in figure 4.11.

Figure 4.11: Monitoring Tool Clock Update Sequence Diagram.

The clock microseconds reset to zero when a clock tick occurs by calling the timer_initialize

function. This function is inside the RTEMS Board Support Package (BSP) in the Timer com-
ponent (not the RTEMS Timer Manager). The Manager component returns the number of mi-
croseconds elapsed since the last timer_initialize call. Apart from resetting the microseconds,
the Manager component also updates its own clock tick tracking (RTEMS keeps the number of
elapsed clock ticks in an unsigned integer).

4.5 Dynamic Architecture - RTEMS Monitoring Tool Host

This section describes the dynamic architecture of the Monitoring tool host, and is divided into
two main sections that describe the dynamic sequence of the receiver and database components.

4.5.1 Receiver

This subsection describes the receiver component illustrated in figure 4.12.
A synchronization message is sent at the beginning to allow the receiver to synchronize, if the Mon-
itoring stub is configured to operate in online mode, or right before rtems_executive_shutdown

in offline mode. After the receiver has synchronized it can start receiving useful information. A
configuration message is sent after the synchronization message so the system knows some vital
information (e.g. microseconds per tick). While the system is in the synchronized state the remain-
ing messages are processed and placed in the Ring Buffer. Regardless of the stub transfer mode
the application can always force the transmission of logs at any time during execution through the
Monitoring API. The Monitoring API always sends a synchronization message to ensure that the
host is ready to receive the information, and tries to send a configuration message. In any case
only one configuration message per application execution is sent to the host, right after the first
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Figure 4.12: Monitoring Tool Receiver Sequence Diagram.

synchronization message.

4.5.2 Database

This subsection describes the database component illustrated in figure 4.13.

Figure 4.13: Monitoring Tool Database Sequence Diagram.

The Monitoring tool database is continuously waiting for new messages to be placed in the ring
buffer. When a new message is placed, the database component either creates a Structured Query
Language (SQL) statement to save the message to the database, or writes a new line in the
respective CSV file.
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4.6 Communication Interface

As shown in section 4.1, the stub needs to transmit the collected information to the host node. This
communication is performed through SpaceWire. The packets sent with the collected information
vary in size and format between the several events being reported. Figure 4.14 shows the format
of a message: it is composed by a header containing the event type and by a body. The event type
is represented in with a single byte while the body has a variable length according to the event
being transmitted.

Figure 4.14: Message Format.

Figure 4.15 shows the possible types of events and associated messages reported by the Monitoring
tool.

Figure 4.15: Message Formats for Different Types of Events.

The synchronization packet is used to synchronize the transmitter and the receiver during the
system initialization phase. Thus, only after the synchronization packet has been received does
the host start saving the messages. This packet has the maximum dimension so that it is not
possible for another message (or series of messages) to have the same content, as all the bits on the
synchronization message are 0 (e.g: the other message types have at least a non-zero event type
code at the beginning).

Apart from the synchronization packet, all other messages contain the clock tick and microsecond
when the event occurred. Since the microsecond is stored in a 3 byte buffer, the clock tick cannot
be greater than 224 microseconds (∼16 seconds), which is a very slow clock tick for the majority
of systems. The number of clock ticks elapsed is saved by RTEMS in an unsigned integer (4 bytes)
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which allows tracking up to 232 clock ticks. For space applications this is a small number (e.g., for
a clock tick of 1ms, the tool can keep track of 49 days before the clock is reset).

The interrupt event message additionally contains a 1 byte field with the type of interrupt event
(ISR started or finished) and a 4-byte field with the interrupt source (number of the generated
interrupt in the Interrupt Vector Table). The Task Scheduling event message contains the task
identification (task name, task RTEMS ID and Task Control Block (TCB) address) and the type
of event as described in Table 4.14. If the event is due to a task priority change, an additional field
is inserted: new priority.

Number Type
0 Task creating
1 Task starting
2 Task dispatching
3 Task yielding
4 Task expediting
5 Task waiting
6 Task blocking
7 Task unblocking
8 Task deleting
9 Task resuming

10 Task suspending
11 Task priority changing

Table 4.14: Different Types of Scheduling Events.

The RTEMS API call event message is divided into two types: an event that marks when the
function was called and another when the function returned. The type of event is represented in
the “type” field (1 bit: 0 for the function call; 1 for the function return). Both types of messages
contain a field with the invoked RTEMS Manager, another field with the function, three fields
containing the calling task identification (if the call was made inside an ISR then these values are
all set to zero) and, for some specific RTEMS Managers (semaphore, message queue, timer, rate
monotonic and extension), three fields containing the calling task identification.

The association of manager and function number with the RTEMS API primitive is represented
in tables 4.15 and 4.16. The function call event contains the arguments passed by the application
to RTEMS. The number of bytes necessary to represent all the arguments in the worst case is
24. The return event is associated with a typically smaller message, since it only sends the re-
turn code of the primitive (typically a rtems_status_code which is 1-byte long). However, since
the rtems_interrupt_disable, rtems_interrupt_enable,rtems_interrupt_is_in_progress,
rtems_interrupt_is_masked, rtems_mask_interrupt, rtems_unmask_interrupt,
rtems_interrupt_flash and rtems_error_report are implemented as macros, the tool cannot
capture these calls.

The Task Stack event message contains the task identifier and the maximum stack usage of that
task (see figure 4.15 for more detail). The Configuration event message contains the address of
the RTEMS Workspace, the RTEMS Workspace maximum size, number of drivers, number of
microseconds per clock tick and the number of ticks per timeslice. The User event message can be
used by the application developer. The application can send four bytes in the message body.
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Manager Primitive
Number RTEMS Manager Number Primitive
0 RTEMS Task Manager 0 rtems_task_create

1 rtems_task_ident
2 rtems_task_start
3 rtems_task_restart
4 rtems_task_delete
5 rtems_task_suspend
6 rtems_task_resume
7 rtems_task_is_suspended
8 rtems_task_set_priority
9 rtems_task_mode
10 rtems_task_get_note
11 rtems_task_set_note
12 rtems_task_wake_after
13 rtems_task_wake_when
14 rtems_task_variable_add
15 rtems_task_variable_get
16 rtems_task_variable_delete

1 RTEMS Interrupt Manager 0 rtems_interrupt_catch
2 RTEMS Clock Manager 0 rtems_clock_set

1 rtems_clock_get
2 rtems_clock_tick
3 rtems_clock_set_nanoseconds_extension
4 rtems_clock_get_uptime

3 RTEMS Timer Manager 0 rtems_timer_create
1 rtems_timer_ident
2 rtems_timer_cancel
3 rtems_timer_delete
4 rtems_timer_fire_after
5 rtems_timer_fire_when
6 rtems_timer_reset
7 rtems_timer_initiate_server
8 rtems_timer_server_fire_after
9 rtems_timer_server_fire_when

4 RTEMS Semaphore Manager 0 rtems_semaphore_create
1 rtems_semaphore_ident
2 rtems_semaphore_delete
3 rtems_semaphore_obtain
4 rtems_semaphore_release
5 rtems_semaphore_flush

Table 4.15: Mapping between RTEMS Manager and Primitive Number Assignment (part 1).
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Manager Primitive
Number RTEMS Manager Number Primitive
5 RTEMS Message Queue Manager 0 rtems_message_queue_create

1 rtems_message_queue_ident
2 rtems_message_queue_delete
3 rtems_message_queue_send
4 rtems_message_queue_urgent
5 rtems_message_queue_broadcast
6 rtems_message_queue_receive
7 rtems_message_queue_get_number_pending
8 rtems_message_queue_flush

6 RTEMS Event Manager 0 rtems_event_send
1 rtems_event_receive

7 RTEMS I/O Manager 0 rtems_io_register_driver
1 rtems_io_initialize
2 rtems_io_open
3 rtems_io_close
4 rtems_io_read
5 rtems_io_write
6 rtems_io_control

8 RTEMS Fatal Error Manager 0 rtems_fatal_error_occurred
1 rtems_error_get_latest_non_fatal_by_offset
2 rtems_error_get_latest_fatal_by_offset

9 RTEMS Rate Monotonic Manager 0 rtems_rate_monotonic_create
1 rtems_rate_monotonic_ident
2 rtems_rate_monotonic_cancel
3 rtems_rate_monotonic_delete
4 rtems_rate_monotonic_period
5 rtems_rate_monotonic_get_status
6 rtems_rate_monotonic_deadline
7 rtems_rate_monotonic_get_deadline_state
8 rtems_rate_monotonic_execution_time

10 RTEMS Extension Manager 0 rtems_extension_create
1 rtems_extension_ident
2 rtems_extension_delete

Table 4.16: Mapping between RTEMS Manager and Primitive Number Assignment (part 2).
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4.7 Conclusions

This chapter presented the monitoring tool design, based on the requirements presented in the
previous chapter (chapter 3), outlining the monitoring tool architecture and describing its imple-
mentation. As a result, the next chapter will present the monitoring tool testsuite.
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Chapter 5

Monitoring Tool Testsuite

This chapter presents the testsuite used to test the developed monitoring tool. The tests are
divided into two categories:

• General Purpose Tests - test general functionality of the monitoring tool (i.e.: all the require-
ments except performance);

• Performance Tests - test the performance requirements of the monitoring tool (refer to sec-
tion 3.5.2).

5.1 Testing

5.1.1 Test Platform Configuration

This section describes how the target and host platforms that compose the Monitoring tool must
be configured in order to run the validation tests, as well as the platform that will build the test
application and monitoring stub to run in the target platform.

Target Platform

The considered Target platform was the Gaisler-Research GR712RC Board, which must be running
the test application together with the monitoring stub. It should be connected to the Host platform
through a SpaceWire link connected to core 0 of GR712.

Host Platform

The considered Host platform was the EGSE-SCOC3 computer, which features the iSAFT RTE
web services. In addition, the Host platform must satisfy the following requirements:

• Java Java Runtime Environment (JRE) 1.8;

• MySQL Server 5.6.

The iSAFT RTE service must be running, and the host should be connected to the Target platform
through a SpaceWire link connected to the SpWPort0 of EGSE-SCOC3.

Build Platform

The build platform is responsible for compiling RTEMS, the RTEMS application and monitoring
stub. A desktop computer running Linux (Debian Lenny) was used. The communication between
the build platform and the target platform is done using GRMON. Refer to section A.4 for how
to execute an application on the target platform.
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5.2 Validation Test Definition

This section contains the description of the tests used to generate the validation test reports. The
tests have been identified with the label val_XX_YYYZZ, which stands for:

• val - Validation Tests;

• XX - Two digit number to identify the type of test;

• YYY - Three digit number to identify the test;

• ZZ - Two digit number to identify the subtest.

The XX identifier can be divided into the following categories:

• 10 - General Purpose;

• 20 - Performance.

The YYY and ZZ identifiers are divided into different categories, depending on the XX identifier. The
combination of the XX, YYY and ZZ parameters shall define a unique identifier for each validation
test, that is, two validation tests cannot have the same XX, YYY and ZZ parameters. According to
the requirement MT-SR-TEST-0010, the test name shall follow the naming rule: The test name of
the each executable is unique and follow the naming rule mne_tt_nnnaa.ext, where:

• mne corresponds to the mnemonic code of the test;

• tt corresponds to the type of test. The tt component corresponds to the XX number defined
above;

• nnn corresponds to test number. The nnn component corresponds to the YYY number defined
above;

• aa corresponds to the subtest number. The aa component corresponds to the ZZ number
defined above;

• ext corresponds to the file extension (e.g. “exe”).

5.2.1 General Purpose Tests

The General Purpose Tests test all but the performance requirements of the Monitoring Tool. To
generate a single test report four applications must be used, namely:

• MAX_APP - the test application which execution will be traced by the monitoring tool. It
performs all the calls that the monitoring tool is capable of tracing;

• Monitoring Stub - the monitoring stub which will record the test application execution. It
should be linked with the MAX_APP test application;

• Monitoring Host - the monitoring host which will receive the trace data from the stub and
save it either on CSV files or on a MySQL database;

• LOG_TEST - tests the trace data saved by the monitoring host to ensure that the data received
is valid (i.e.: the trace of a function has the expected number of fields, and that each field is
within the valid values or byte range). It tests trace data saved either on CSV files or on a
MySQL database.
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When the monitoring stub is linked with the MAX_APP application it should be executed on the
target platform, and at the same time the monitoring host should be running on the host platform.
When the MAX_APP has ended its execution and the monitoring host has received all the trace data,
that data is then used as input for the LOG_TEST which will test each trace line and generate a
complete test report. The Monitoring Testsuite uses three Monitoring Stub configurations, each
of them being an individual validation test. Each test should be run two times, such that the
monitoring host can record the trace data in both CSV and database storage mediums. A test
case is only complete when the monitoring host stores the received trace data, and the test report
is only generated when the trace data is given to the LOG_TEST application.

5.2.1.1 Test Case Specification

The General Purpose Tests have been identified with the label val_10_YYYZZ, which stands for:

• val - Validation Tests;

• YYY - Three digit number to identify the test;

• ZZ - Two digit number to identify the subtest.

The YYY identifier can be divided into the following categories:

• 010 - Monitoring Stub in offline mode with a priority filter for task schedulability events
between 70 and 110;

• 020 - Monitoring Stub in offline mode with filters for RTEMS API, task scheduling and task
stack events;

• 030 - Monitoring Stub in online mode without filters.

The ZZ identifier can be divided in the following categories:

• 10 - Monitoring Host recording trace data in CSV files;

• 20 - Monitoring Host recording trace data in MySQL database.

5.2.1.2 Executing the Tests

Each test has to be executed manually. The procedure to compile an application along with a
monitoring stub is described in section A.3.
The application used in the Monitoring Testsuite is always the MAX_APP. This application is mon-
itored by the monitoring stub with the configuration defined for each test case. After compiling
the MAX_APP application, enter on one of the validation test directory and proceed as stated in
section A.1.6.
In the host platform the monitoring host must be running RTEMSMonitoringHost.jar (found in the
directory Host/dist), configured to store the trace data in CSV files for the subtests number 10 or
in the MySQL database for the subtests number 20. To generate the test reports see section 5.2.1.3.
Since the test reports are too long (e.g.: the reports for val_10_01010 and val_10_03020 are over
340000 lines), appendix B presents a snippet of the trace data and the resulting test report for the
val_10_01010 test.
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5.2.1.3 Test Report Generation

This section describes the steps required to generate a test report from the execution of a test
case. After the execution of a test case the resulting output is either a directory with CSV files
or a new MySQL database containing the trace data of the monitored application. The LOG_TEST
application (found in the directory LOG_TEST/dist) verifies each trace line and generates a test
report evaluating if the data received and stored is valid for the given test case.
The command in listing 5.1 should be run to generate the test report for a given test case (the
<configuration> field should be replaced with the desired configuration, described below).

java −j a r LOG_TEST. j a r <con f i gu ra t i on>

Listing 5.1: Starting the LOG_TEST application to generate the general purpose test reports.

When launching the test report generator it should be stated the trace data source type (CSV
or database), the directory where the report should be written to and the test case to which the
trace data corresponds. If the trace data source is a database then the database Uniform Resource
Locator (URL), user name and password must also be given, otherwise if the trace data source is
CSV then its directory should be provided. Configuration of the test report generator is done by
supplying one following arguments in the command line, replacing the fields between < > with the
corresponding value:

• Using MySQL database:

– -db <url> <username> <password> <test_report_dir> <test_case_name>

• Using CSV files:

– -csv <csv_directory> <test_report_dir> <test_case_name>

Where the test_report_dir is the directory where the test report will be saved, and test_case_name
is the name of the test case which corresponds to the given trace data. In the case of the
database the URL field must point to the database containing the trace data of the test case
given in test_case_name. Similarly if using CSV files the csv_directory must be the path to
a directory containing the CSV files which resulted from the execution of the given test case in
test_case_name.
Note that when testing the trace data from CSV files the subtest number is always 10, and when
testing trace data from the MySQL database the subtest number is always 20.

5.2.2 Performance Tests

The Performance Tests test the performance requirements of the Monitoring Tool. These tests mea-
sure the monitoring stub performance while saving events on memory and while sending events to
the monitoring host through SpaceWire.

A test scenario was devised to replicate a sample application that may be subject to monitoring.
The considered scenario is as follows: a task acquires a semaphore via rtems_semaphore_obtain,
and waits for an event with rtems_event_receive causing a context switch and a stack save. This
scenario is defined to take 10 milliseconds.

The performance tests call directly the functions on the monitoring stub which save the respective
events on memory and that send the events to the monitoring host directly. The actual functions
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on RTEMS are not called or considered. To measure the time spent to save or send an event, each
is saved or sent 1000 times such that the final time is the average of all the iterations. The time is
measured with the leon3 timer 0.
To generate a single test report three applications must be used, namely:

• DUMMY_APP - dummy application with a single task containing only a call to rtems_shutdown_executive.
This application exists only so the monitoring stub can be compiled;

• Monitoring Stub - the monitoring stub which will be linked with the DUMMY_APP. In this case
the monitoring stub will not execute, but must be compiled as the performance tests will call
directives on the Stub. This monitoring stub is in the DUMMY_APP directory;

• A performance test.

The DUMMY_APP and the monitoring stub in the same directory should be compiled as described
in the procedure to compile an application along with a monitoring stub in section A.3, and only
then can the performance tests (val_20_01010 and val_20_02010) be compiled and executed.

5.2.2.1 Test Case Specification

The Performance Tests have been identified with the label val_20_YYY10, which stands for:

• val - Validation Tests;

• YYY - Three digit number to identify the test.

The YYY identifier can be divided into the following categories:

• 010 - Performance test to measure the time spent saving a monitored event;

• 020 - Performance test to measure the time spent sending a monitored event via SpaceWire.

5.2.2.2 Executing the Tests

Each test has to be executed manually. The DUMMY_APP directory contains both the dummy
application and the monitoring stub. Once these have been compiled the performance tests can
be compiled and executed.
To compile the performance tests enter on one of the validation test directories (val_20_01010 or
val_20_02010) and run the make command.
The test is now compiled, and can be loaded and executed on the GR712RC Board by following
the instructions in section 5.1.1.
In the host platform the monitoring host must be running RTEMSMonitoringHost.jar (found in
the directory Host/dist). In this case it does not matter if the trace data is saved on CSV or on
the database, as the host is only required to activate the SpaceWire link. Since the performance
tests never send a synchronization message to the monitoring host, all messages sent by the tests
will be ignored. To generate the test reports see sections 5.2.1.3 and 5.2.2.3.

5.2.2.3 Test Report Generation

The test report is printed on the GRMON console, after the test has been loaded and executed as
described in section 5.1.1. The test report for the performance tests can be seen in appendix C.
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5.3 Conclusions

The tests show that the monitoring tool is able to correctly capture the execution of a given applica-
tion, and transfer that information to a monitoring host for storage and later analysis. The require-
ments specified in chapter 3 were validated, and all tests have passed. Note that not all require-
ments can be tested with software, meaning that they have to be manually validated. This is the
case of requirements MT-SR-TEST-0010, MT-SR-TEST-0020, MT-SR-TEST-0030, MT-SR-DITC-0020,
MT-SR-DITC-0050, MT-SR-DITC-0080, MT-SR-DITC-0110 and MT-SR-VAL-0010.

The source code for the developed Monitoring Tool and the full test reports can be found on the
Compact Disc (CD) delivered with this dissertation.

The next chapter will describe how this monitoring tool can work in a SMP configuration, and
what was tried to accomplish it.

64



Chapter 6

Multicore

This chapter gives a brief presentation of the challenges presented by a multicore system, how it
is implemented in RTEMS and how the monitoring tool has been changed to trace an application
execution running in a SMP configuration.

6.1 Multicore in Space

Following the increase in popularity of multicore systems in Real-Time Embedded Systems, the
European Space Agency has been analyzing the possibilities and problems of multicore systems
in space applications. Cobham-Gaisler develops the processors and boards used by ESA on their
space missions, and is currently developing a quad-core LEON4 processor to add to the current
dual-core LEON3 GR712RC Board as a space ready (radiation tolerant) multicore platform.

The benefits that the space sector may derive from multicore systems have been analyzed in the
report of a recent (2011) activity [MP11]. It reports benefits for scientific payload data process-
ing applications, such as image processing and compression, which leads to savings in telemetry
downlink operations, as it reduces the amount of time spent transferring data to earth. It is also
noted that by increasing the number of cores it is possible to reduce the CPU frequencies, leading
to lower power consumption.

6.2 Multicore Challenges

Updating an existing single-core system for multi core raises some synchronization concerns. A
single-core OS can easily achieve task-level mutual exclusion by setting the running task as non-
preemtible (since only one task can execute at a given time, and that task can not be preempted by
any another task regardless of priority, the task is guaranteed to execute in mutual exclusion con-
cerning other tasks - it still could be preempted by an ISR), however in a multicore setting this is
no longer the case, as tasks running on other cores can execute without having to preempt this task.

As for interrupt handling, in a single-core system an ISR is guaranteed to execute in system-wide
mutual exclusion (unless the OS allows nested interrupt handling). On a multicore environment a
single ISR executes only on a single core, meaning that an ISR may execute concurrently with a
task or even another ISR running on another core.

Another issue with multicore systems is cache coherency among private caches. Each individual
core usually has one or two private (L1) caches, for instructions and data. These caches have to be
coherent among all the system’s cores, otherwise there is the risk of one CPU using an old value
already updated by another core. Some hardware architectures include one or more shared cache
levels (L2, L3, ...).
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Coherence is obtained through cache snooping, where the CPUs (namely their cache controller)
listens (or sniffs) the system bus for information on private cache updates. When a cached value
is updated (marked as “dirty”), the cache controller invalidates that address on all the other CPU
caches. This means that when another CPU tries to access that address on their cache it will result
on a read miss, so the cache controller will send a request on the system bus for that address. Every
cache controller check their cache and if they have a value marked as dirty on that address they
update its state to “valid” and sends a copy to the requesting CPU. Cache coherence is critical but
can have significant impact on the system bus bandwidth, which may be accentuated by certain
execution patterns.

6.3 RTEMS SMP implementation

This section gives a brief presentation on the SMP implementation in RTEMS 4.11.

6.3.1 Source Code Separation

All the SMP specific code in RTEMS is encapsulated within RTEMS_SMP define guards, which are
only active if the flag –enable-experimental-smp is used when building RTEMS.

6.3.2 SMP Applications

SMP-enabled applications must also configure the RTEMS configuration table with at least the
options shown in listing 6.1, where <MAXIMUM_PROCESSORS> must be replaced with the maximum
number of cores that the application wishes to use (note that the hardware or the BSP may not
be able to provide the requested amount of processors).

#de f i n e CONFIGURE_SMP_APPLICATION

#de f i n e CONFIGURE_SMP <MAXIMUM_PROCESSORS>

Listing 6.1: RTEMS SMP configuration table options for applications.

6.3.3 Interrupt Processing

In a SMP configuration an interrupt may be broadcasted to all cores, or mapped to a single core
(interrupt affinity).

Since every core will handle interrupts, the interrupt handling routines that exist on RTEMS, such
as rtems_interrupt_disable and rtems_interrupt_enable, have been replaced (if used in a
SMP setting) with a local version: rtems_interrupt_local_disable and rtems_interrupt_local_enable,
so only interrupts on the core executing the function are disabled/enabled.

6.3.4 Multicore Scheduling

There are three main multicore scheduling approaches:

• Partitioned Scheduling - Each task executes on a fixed processor (no task migration);

• Semi-partitioned Scheduling - Each task (or task instance) executes on a fixed processor, but
may migrate (whole task, of just an instance) to another;

• Global Scheduling - Any task can execute and migrate to any processor .
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The first two approaches use static task assignment, while global scheduling feature dynamic task
assignment.

6.3.5 RTEMS SMP Scheduling

RTEMS currently features three priority based SMP schedulers [On-15]:

• Simple SMP;

• Priority SMP;

• Priority Affinity SMP.

Note that all RTEMS SMP schedulers ignore the task preemption model (i.e.: a task can not be
configured as non-preemptible).

6.3.5.1 Simple SMP Scheduler

The Simple SMP scheduler is a non-deterministic algorithm (an implementation of Global Job-
Level Fixed Priority scheduler) which favours replacing threads that are preemptible and have
executed the longest when given the choice to replace one of two threads of equal priority on
different cores.

6.3.5.2 Priority SMP Scheduler

The Priority SMP scheduler is a deterministic algorithm based on the Global Fixed Task-Priority
Pre-emptive scheduler. It uses one ready chain per priority level to ensure constant time insert
operations.

6.3.5.3 Priority Affinity SMP Scheduler

This scheduler is an extension of the Priority SMP Scheduler (refer to 6.3.5.2) that adds thread to
core affinity support. Affinity is achieved by using CPU sets (same as in the Linux Kernel), which
are 32-bit bitmasks where a bit set means that the corresponding CPU is part of the set. Each
thread/task has a CPU set, which if used for affinity defines the CPU cores where that task can
execute.

6.3.6 CPU Core Data and Communication

Due to the sequential nature of the basic system initialization one processor has a special role: the
processor executing the boot_card() function, called the boot processor. All other processors are
called secondary.

Each CPU core in RTEMS is assigned a data structure (Per_CPU_Control) to hold each core
current state. This structure is used independently of the number of cores, but in a SMP setting
the structure has additional fields to state if the core has been started (at start up only one core is
active, the others have to be powered-up by RTEMS), to retrieve the scheduler context (i.e.: how
many cores the scheduler instance owns) and even a message field (32-bit unsigned integer) that
can be used for inter-CPU synchronization.
Since this data structure is in shared memory, visible to all cores, a given core can atomically store
(using the C11 standard atomic operations) a message on the receiving core data structure, and
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notify the core that a message was sent by forcing an external interrupt (currently IRQ 14 for the
sparc BSP) on the interrupt controller. Besides sending messages, a core can also notify another
core for it to run its thread dispatcher, which may be the case when a thread migrates between
cores (so the thread’s new CPU can evaluate if it can execute right away).

Upon the reception of an Inter-Processor Interrupt (IPI) interrupt an ISR is called which

6.3.7 Resource sharing among cores - MrsP

MrsP is a lock-based resource control protocol [BW13]. It is a generalization of the priority ceiling
protocol featuring:

• FIFO ordering;

• busy wait at ceiling priority;

• helping mechanism.

Each core receives a local ceiling for each global resource, while each global resource is given a
FIFO list. If a task requests a given resource it will spin (busy wait with a spinlock) at that
resource’s local ceiling, and in the event that other tasks also require access to the resource then
they will also still at their local ceiling and their requests are handled in a FIFO order.

It also uses a “helping protocol”. The general idea behind a helping protocol is that a task waiting
for a resource will execute the resource’s critical section on behalf of another waiting task. If a
task holding a resource is preempted by a local higher priority task, the task holding the resource
can migrate to a CPU containing a task waiting for that same resource. When migrated the task
holding the resource will have a higher priority than the task waiting for the resource.

RTEMS uses a dynamic list for the FIFO, where each task is assigned a node. Each scheduler
node has three thread pointers:

• owner - the task owning the node;

• user - if the task owning the node helps a task, this pointer will point to the helped task;

• idle - active owners will lend their own node to an idle thread in case they execute currently
using another node or in case they perform a blocking operation;

• accepts_help - if the owner task is helping another task (help is always for tasks running on
another core), then this pointer will point to the task that will be running on the owner task
CPU while it is providing help.

Currently the only resource managed by MrsP is semaphores, named MrsP semaphores.

6.4 Monitoring Tool in Multicore

This section describes how the developed monitoring tool was changed to work with RTEMS 4.11
in SMP configuration.
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6.4.1 The Target Platform

Since Edisoft had to return the GR712 board to ESA, the multicore part of the monitoring tool
had to be based on another target. Since there was no suitable multicore hardware available to
use with RTEMS SMP (one option was the Raspberry Pi 2, but the SMP support for it is still a
work in progress), the realview-pbx-a9-qemu BSP was chosen, as it is a BSP that runs on the
QEMU emulator, and its SMP support in RTEMS is already somewhat mature (it was one of the
first SMP BSPs). The Realview PBX A9 board is an ARM reference board Field-Programmable
Gate Array (FPGA), with a A9 dual-core processor. The -qemu sufix on the BSP name means
that this particular BSP is configured for the emulated version of this board provided by QEMU.

There was, however, the need to add a few missing peripherals to the this BSP:

• support for a secondary timer, to be used by the monitoring tool;

• support for a secondary UART, for the transmission of trace data from the target to the host
platform (refer to section 6.4.2).

In addition to this new code, the RTEMS configuration table definition was changed to remove
the const qualifier, so the monitoring tool could access and update it with its own resource
requirements.

6.4.2 Communication Channel

Since the new target platform had no SpaceWire connectivity, a new communication channel was
required. The choice was to use a RS-232 serial link to connect the target platform with the
monitoring host, through QEMU (QEMU acting here as an intermediary node between the two
platforms).
Since the monitoring host was written in Java, the RXTX library [Lib] was chosen to handle the
serial communications.

As for the target, the Termios (the UNIX API for terminal I/O operations) implementation in
RTEMS 4.11 was updated to remove the ONLCR flag, which precedes every byte that has the
value 10 (which translates to the character ’\n’ - newline - in the American Standard Code
for Information Interchange (ASCII) table) with a new byte with the value 13 (the character
’\r’ - carriage return), and the OPOST flag, which enables text output post-processing. Since the
monitoring tool transmits binary data, these transformations alter the data being sent and had to
be removed.

6.4.3 Changes to the Monitoring Stub

As RTEMS 4.11 is a number of versions more recent than RTEMS 4.8 (Edisoft’s RTEMS Improve-
ment is a fork of RTEMS 4.8), there were a number of changes that the monitoring tool had to
take into account, apart from the SMP specific code.
As for the multicore changes, only two changes were needed to the monitoring tool stub so it could
monitor events in a SMP configuration:

• Event buffer - a single event buffer is not suitable in a SMP configuration, as it would create
a bottleneck since every core would have to wait for their turn to store their events;
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• Event message data - because a SMP environment implies two or more CPU cores, each
event has to be tagged with the CPU core where it occurred to properly identify its source.

Having one event buffer per core instead of a global buffer works best, as each core does not have
to wait for the other cores to store its events (therefore avoiding synchronization issues). However,
this does not ensure the chronological order of events, as each buffer will store events on their own
pace, depending on the tasks they are executing. Do note that even if a global buffer were to be
used the chronological order would not be ensured, as tasks with higher priority would get to write
their events on the buffer faster.

Having multiple buffers also does not affect the memory requirements: if each core is assigned a
ring buffer with 1 MB, then a global buffer servicing n cores would require n MB.

The bottleneck is now the event transmission, as there is only one interface out of the system. The
way the monitoring tool deals with this depends on the transmission mode being used:

• online mode - if e is the number of events to send on each period, and c is the number of
cores on the system, then e

c events are sent from each core buffer until the total e events have
been sent. For this to properly work e has to be equal or greater than c otherwise the events
on the buffer of the last core(s) would only be sent at the end;

• offline mode - each core’s buffer is emptied, one at a time (i.e.: all events in core 1 buffer are
sent, then all events on core 2 buffer are sent, and so on).

As for the event message data, a single byte-field was added to every event message after the
microsecond field (refer to figure 4.14) containing the CPU core index where the event has occurred.

6.4.4 Changes to the Monitoring Host

The only change required on the monitoring host was to accommodate the new core byte-field in
every event message that the stub now produces, due to the update in the message protocol (as
described in section 6.4.3).

6.4.5 Implementation

As detailed in section 6.4.1, QEMU was used to emulate the Realview PBX A9 platform. Listing 6.2
presents how an SMP application can be executed on QEMU, where -serial mon:/dev/pts/4

may be replaced by any other pseudo-terminal where the application standard output can be shown,
and -serial /dev/ttyD0 is the secondary serial port where the monitoring stub will output the
execution data.

qemu−system−arm −no−reboot −net none −nographic −M rea lv iew−pbx−a9 −m 256M −
smp 2 −ke rne l o−opt imize /mtApp . exe − s e r i a l mon: / dev/ pts /4 − s e r i a l /dev/

ttyD0

Listing 6.2: Running SMP application on QEMU.

Since the monitoring host requires a connection to be open at all times, and QEMU only keeps the
serial ports up while it is running, there was a need for a way to have a serial port always up on the
system. The solution found was to create a loopback between two pseudo-terminals, created with
the socat utility (refer to listing 6.3). This creates two pseudo-terminals . As a pseudo-terminal
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does not depend on an actual hardware connection, the monitoring host can be waiting for data
on that port indefinitely. While QEMU executes the application, the monitoring stub feeds that
port with the execution data which can then be processed by the monitoring host.

socat −d −d pty , raw , echo=0, on l c r=0 pty , raw , echo=0, on l c r=0

Listing 6.3: Looback between two pseudo-terminals.

The monitoring host is configured to receive data on the /dev/ttyD1 port, so one of the pseudo-
terminals created by socat must match that name. This was done for both pseudo-terminals
using symbolic links, as described in listing 6.4, where xx and yy must be replaced with the
pseudo-terminal numbers returned by socat.

ln −s /dev/ pts /xx /dev/ttyD0

ln −s /dev/ pts /yy /dev/ttyD1

Listing 6.4: Creating a symbolic link to the pseudo-terminals.

Even though the changes required on the monitoring tool to operate in a SMP configuration are
small, there were transmission problems between the monitoring stub and the host and as such the
multicore version of the tool could not be properly tested, as data would be lost in the transmission.
Replacing the SpaceWire communication with RS-232 (as described in section 6.4.2), and placing
QEMU between the stub and the host added extra layers of unexpected complexity. The QEMU
source code had to be changed, as it hardcodes the termios flags used by any serial ports given
to it (by default it treats all serial communication as text/lines) and sets a hardcoded baudrate,
replacing any previous configuration of the ports. Because it does all of this silently, it was tricky
to detect what was happening. In the end there was not enough development time to resolve the
problem.

6.5 Conclusions

Initial tests with the extension of the tool for multicore systems show that it is able to monitor the
execution of an application, and tracing back the events to the CPU core where they have occurred.

The SMP version of the tool is in the MON_TOOL_SMP directory in the delivered CD, as well as the
patches for RTEMS 4.11 and QEMU source-codes. The tool configuration and compilation is the
same as described in appendix A.

The next chapter presents the conclusions and future work to be done on the developed monitoring
tool.
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Chapter 7

Conclusions and Future Work

In this dissertation a state of the art in monitoring and software execution tracing, a set of require-
ments and an architecture for a monitoring tool were presented, as well as an implementation for
both single and multicore systems in both sparc and arm architectures.

The tests developed and performed show that the monitoring tool is able to correctly capture the
execution of a given application (with varying degrees of verbosity), and transfer that information
to a monitoring host for storage and later analysis, while also validating the requirements presented
in chapter 3. Initial results from the multicore version show that it is also viable for such systems.

The results of this work are relevant for future improvements of the developed monitoring tool at
Edisoft, in the context of future projects with ESA.

7.1 Future Work

The developed monitoring tool can obviously be improved and extended. One possible improve-
ment might be to monitor only a specific event instance, instead of all events of a certain type
(e.g.: only monitor the stack usage of a specific task, instead of monitoring the stack usage of all
tasks on the system).

A graphical display tool for the execution trace data based on tracecompass or tracealizer would
be a great next step, as it would be much easier to view and interpret the data that the monitoring
tool outputs.

Regarding the tool usage, currently the monitoring tool is composed of two distinct components
(the host and the stub) that are configured and operated by the user as two independent applica-
tions. A more refined version of the monitoring tool could have the host machine compiling the
monitored application, configuring and linking the stub to the application, sending the executable
to the target machine and capturing the execution events. Ideally the monitoring tool graphical
timeline could even be integrated within an IDE for debugging convenience.

As for the event capture, which is currently done by wrapping the calls at linkage time, the wrap-
pers could be automatically generated based on debugging data (e.g.: DWARF debugging data) to
retrieve function signatures, instead of manually defining the wrapper. This could allow an easier
port of the tool across RTEMS versions, and easily monitor more API functions, BSP specific
features or even application defined functions.

In terms of architecture, it would be nice to include in the tool support for hardware tracers (such
as the Debug Support Unit (DSU) included in the Gaisler’s GR712 board), to attest the benefit
(or lack of) an hybrid monitoring architecture.
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Appendix A

Monitoring Tool User Manual

A.1 Monitoring Tool Installation

This section describes how to install the RTEMS Monitoring tool. It is a pre-requisite for the
installation that the user detains knowledge in Linux commands and the compilation process of
RTEMS. It is also assumed that the user already has RTEMS Improvement completely installed
and working.

A.1.1 Installing the host tools

This section describes how to obtain and install the tools required for the Monitoring tool host in
the Host platform. Both tools (MySQL [Corc] and JRE [Corb]) can be found in their respective
websites.

A.1.2 Monitoring Tool

This section describes how to obtain and unarchive the Monitoring tool. For future reference, it
is assumed that the Monitoring tool files are in the $RIMP_ROOT/archive directory. The variable
$RIMP_ROOT should be set as defined in listing A.1.

export RIMP_ROOT= ’ ’/home/ rtems / ’ ’

Listing A.1: Setting the $RIMP_ROOT variable.

A.1.2.1 Unarchiving the Monitoring source

The files obtained in the previous step are compressed and need to be unarchived in order to be
used. It is assumed that the Monitoring tool will be unzipped to the $RIMP_ROOT/build directory.
To do this, type the commands shown in listing A.2.

cd $RIMP_ROOT/ bu i ld

unzip . . / a r ch ive /MON_TOOL. z ip

Listing A.2: Commands to unarchive the monitoring tool.

Doing this will create the directory MON_TOOL. Inside this directory you will find the Stub directory
(which contains the stub files) and the Host directory (which contains the host files). The file
RTEMSMonitoringHost.jar (the host program) can be found in the Host/dist directory, which
must be copied to the EGSE SCOC3 computer.

A.1.3 Monitoring Host

This section explains the process to configure and execute the host. It is assumed that the
RTEMSMonitoringHost.jar file is already extracted in the $RIMP_ROOT/build/MON_TOOL direc-
tory.
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A.1.4 Executing the Monitoring Host

The host will retrieve the information provided by the application (compiled with the stub). Run
the command in listing A.3 to execute the Monitoring host (the iSAFT RTE service must be
already running).

java −j a r RTEMSMonitoringHost . j a r <Conf igurat ion>

Listing A.3: Command to execute the monitoring host.

When launching the RTEMS Monitoring Host, there are at least two parameters that need to be
specified in the case that a MySQL database is used: a database username and the corresponding
password to write the retrieved data. It is also possible to change the name of the CSV file
where the data is written. After the host has been started, the stub can be executed and the
communication established.

A.1.5 Host Configuration

Configuration of the Monitoring host is done by supplying the arguments shown in table A.1.

Parameter Name Description
-db <url> <username> <password> Indicates that the results shall be saved on a MySQL database
-csv <csv_directory> Indication that the results shall be saved on CSV files

Table A.1: Monitoring Host Configuration.

The fields between < > must be replaced with the corresponding information. While the stub is
transmitting, the Monitoring host will save the results either in the MySQL database or CSV files
depending on which parameter was used. If the data is being saved into a database, the user
and password to access it are needed, as well as the database URL. Each execution of the user
application will result on a new database, with one table per event type. If CSV files are being
used then each execution of the user application will result on a new directory containing the CSV
files, one file per event type. In both formats each execution is labeled with a timestamp from the
machine running the Monitoring host.

A.1.6 Monitoring Stub

This section explains the process to configure and execute the stub. It is assumed that the Stub
folder is already extracted in the $RIMP_ROOT/build/MON_TOOL directory.

A.1.6.1 Stub API

The Monitoring tool provides an API with three functions that can be used by the target ap-
plication. These provide the possibility to force the buffer transmission, enable or disable the
Monitoring tool in runtime and log a custom user message. They can be easily integrated in a
RTEMS application by adding the header monitoring_api.h (refer to listing A.4) to the target
application and including the files monitoring_api.h and monitoring_api.c in the application
Makefile. These two files contain a stub implementation of each API function in order for the pro-
grammer to compile the application successfully. When the result its compiled with the Monitoring
tool stub files, the real functions will be called.
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#inc lude ‘ ‘ monitoring_api . h ’ ’

Listing A.4: Include file that contains the prototypes of the original functions.

monitoring_flush

This function provide means to the application to force the transmission of the buffer (totally or
partially). When calling this function a parameter is requested: if zero the function will try to
transmit the entire buffer, otherwise it will try to transmit the total number of events requested.
Note that when the buffer contains less logs than the parameter supplied, it is the same as calling
the function with the value zero. The input parameters are shown in table A.2. Listing A.4 shows
the required headers that contains the prototypes of the functions to include in the application,
and listing A.5 presents an usage example.

Member Type Description
total uint32_t The total logs to transmit. If zero, sends all logs in the buffer.

Table A.2: Monitoring Stub API: monitoring_flush parameters.

monitor ing_f lush (7 ) ;

Listing A.5: Example showing how to force the transmission of seven logs.

Return Value:

• Integer - total number of events transmitted.

timeline_user_event

This function provide means to the application to log a specific user message. When calling this
function a parameter with the user message is requested. The input parameters are shown in
table A.3. Listing A.4 shows the required headers that contains the prototypes of the original
functions to include in the application, and listing A.6 presents an usage example.

Member Type Description
message uint32_t The message to log.

Table A.3: Monitoring Stub API: timeline_user_event parameters.

t imel ine_write_user_event (23) ;

Listing A.6: Example showing how to log a specific message.

Return Value:

• 0 - successfully logged;

• 1 - error logging the message.

monitoring_enable

This function provides means to the application to enable and disable the Monitoring tool by
the target application in execution time. When setting this variable a value is requested: if zero
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the tool will stop its monitoring capabilities, if one, it enables the monitoring capabilities. Note
that this function either enables all the previous monitoring capabilities or disables everything, it
cannot disable one custom function call (see section A.1.7 to enable or disable custom calls). The
input parameters are shown in table A.4. Listing A.4 shows the required headers that contains the
variable definition to include in the application, and listing A.7 presents an usage example.

Member Type Description
monitoring_enable int 0 - Disables the log functionality

1 - Enables the log functionality

Table A.4: Monitoring Stub API: monitoring_enable parameters.

//<app l i c a t i o n code>

monitoring_enable (0 ) ; /∗ Disab le the t o o l ∗/

//<app l i c a t i o n code >

monitoring_enable (1 ) ; /∗ Enable the t o o l ∗/

//<app l i c a t i o n code >

Listing A.7: Example showing how to enable and disable the tool monitoring capabilities.

A.1.7 Stub Configuration

Configuration of the Monitoring stub is done by modifying the parameters in the timeline_user_configuration.h
header file. This file can be found in the Stub folder. Note that any changes to this file implies the
Stub recompilation.

A.1.7.1 User Configuration

The timeline_user_configuration.h file allows the developer to select which events are monitored
and to set a few configurations to the Monitoring tool. There are several features that can be
modified in this file. The following sub sections contains the user configurable parameters. Note
that changing any of the items described implies a new recompilation of the stub so the changes
can take effect. To recompile the stub perform as explained in section A.4.

A.1.7.2 Tool Configuration

Tables A.5 and A.6 present the generic tool configuration parameters available to the user.

A.1.7.3 RTEMS API: Task Manager

Tables A.7 and A.8 present the available Task Manager API functions to monitor.

A.1.7.4 RTEMS API: Interrupt Manager

Table A.9 presents the available Interrupt Manager API functions to monitor.
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Parameter Name Description Parameter
Range

TIMELINE_VERBOSE_MODE Displays debug mes-
sages in the target
platform STDOUT

0 - Disable

1 - Enable
TIMELINE_BUFFER_OVERRIDE Override the oldest

data when the buffer
is full. If not, new
events will be lost

0 - Disable

1 - Enable
TIMELINE_TASK_DEFAULT_PRIORITY The RTEMS Moni-

toring tool task pri-
ority

1.. 255

TIMELINE_TASK_DEFAULT_PERIOD The RTEMS Moni-
toring tool task pe-
riod (given in system
clock ticks)

Integer range

TIMELINE_TASK_DEFAULT_NUMBER_MESSAGES_-
SEND

The RTEMS Moni-
toring tool number of
messages to send per
period (only used in
on-line mode)

Integer range

TIMELINE_MONITOR_INTERRUPTS Interrupts are moni-
tored

0 - Disable

1 - Enable
TIMELINE_TASK_SCHEDULABILITY_DEFAULT_-
HIGH_PRIORITY

A task schedulability
is monitored if its
initial priority is
between these two
thresholds

1.. 255

TIMELINE_TASK_SCHEDULABILITY_DEFAULT_-
LOW_PRIORITY

1.. 255

TIMELINE_TASK_STACK_DEFAULT_HIGH_PRIORITY 1.. 255
TIMELINE_TASK_STACK_DEFAULT_LOW_PRIORITY 1.. 255
TIMELINE_DEFAULT_API_HIGH_PRIORITY A RTEMS API call

is monitored if the
task that performed
the call original pri-
ority is between these
two thresholds

1.. 255

TIMELINE_DEFAULT_API_LOW_PRIORITY 1.. 255
TIMELINE_DEFAULT_API_INTERRUPT_TRACE Monitor RTEMS

API calls that were
performed inside an
ISR

0 - Disable

1 - Enable

Table A.5: Monitoring Stub Configuration Parameters (1/2).
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Parameter Name Description Parameter
Range

TIMELINE_ON_LINE_MODE The Monitoring on-
line mode is used.
Note that the off-line
mode must not be ac-
tive

0 - Disable

1 - Enable
TIMELINE_OFF_LINE_MODE The Monitoring off-

line mode is used.
Note that the on-line
mode must not be ac-
tive

0 - Disable

1 - Enable
TIMELINE_SPW_HOST_ADDRESS The Monitoring SpW

host address
0.. 255

TIMELINE_SPW_MAJOR_NUMBER The major number
to register the driver
(make sure it is avail-
able)

0..NUMBER_-
MAXIMUM_-
OF_DRIVERS

TIMELINE_SPW_MINOR_NUMBER The minor number to
use to send messages

0.. 5

Table A.6: Monitoring Stub Configuration Parameters (2/2).

A.1.7.5 RTEMS API: Clock Manager

Table A.10 presents the available Clock Manager API functions to monitor.

A.1.7.6 RTEMS API: Timer Manager

Table A.11 presents the available Timer Manager API functions to monitor.

A.1.7.7 RTEMS API: Semaphore Manager

Table A.12 presents the available Semaphore Manager API functions to monitor.

A.1.7.8 RTEMS API: Message Queue Manager

Table A.13 presents the available Message Queue Manager API functions to monitor.

A.1.7.9 RTEMS API: Event Manager

Table A.14 presents the available Event Manager API functions to monitor.

A.1.7.10 RTEMS API: I/O Manager

Table A.15 presents the available I/O Manager API functions to monitor.

A.1.7.11 RTEMS API: Error Manager

Table A.16 presents the available Error Manager API functions to monitor.

A.1.7.12 RTEMS API: Rate Monotonic Manager

Table A.17 presents the available Rate Monotonic Manager API functions to monitor.
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Parameter Name Description Parameter
Range

TIMELINE_DEFAULT_API_TASK_CREATE_TRACE Monitor
rtems_task_create
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_IDENT_TRACE Monitor

rtems_task_ident
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_START_TRACE Monitor

rtems_task_start
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_RESTART_TRACE Monitor

rtems_task_restart
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_DELETE_TRACE Monitor

rtems_task_delete
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_SUSPEND_TRACE Monitor

rtems_task_suspend
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_RESUME_TRACE Monitor

rtems_task_resume
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_IS-
_SUSPENDED_TRACE

Monitor
rtems_task_is-
_suspended function

0 - Disable

1 - Enable

Table A.7: Monitoring Stub Configuration: Task Manager (1/2).
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Parameter Name Description Parameter
Range

TIMELINE_DEFAULT_API_TASK_SET-
_PRIORITY_TRACE

Monitor rtems_task-
_set_priority func-
tion

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_MODE_TRACE Monitor

rtems_task_mode
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_GET_NOTE_TRACE Monitor

rtems_task_get_note
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_SET_NOTE_TRACE Monitor

rtems_task_set_note
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_WAKE-
_AFTER_TRACE

Monitor rtems_task-
_wake_after func-
tion

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_WAKE-
_WHEN_TRACE

Monitor rtems_task-
_wake_when func-
tion

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_VARIABLE-
_ADD_TRACE

Monitor
rtems_task_variable-
_add function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_VARIABLE-
_GET_TRACE

Monitor
rtems_task_variable-
_get function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TASK_VARIABLE-
_DELETE_TRACE

Monitor
rtems_task_variable-
_delete function

0 - Disable

1 - Enable

Table A.8: Monitoring Stub Configuration: Task Manager (2/2).

Parameter Name Description Parameter
Range

TIMELINE_DEFAULT_API_INTERRUPT-
_CATCH_TRACE

Monitor
rtems_interrupt-
_catch function

0 - Disable

1 - Enable

Table A.9: Monitoring Stub Configuration: Interrupt Manager.
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Parameter Name Description Parameter
Range

TIMELINE_DEFAULT_API_CLOCK_SET_TRACE Monitor
rtems_clock_set
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_CLOCK_GET_TRACE Monitor

rtems_clock_get
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_CLOCK_SET-
_NANOSECONDS_EXTENSION_TRACE

Monitor
rtems_clock_set-
_nanoseconds-
_extension function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_CLOCK_GET-
_UPTIME_TRACE

Monitor
rtems_clock-
_get_uptime func-
tion

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_CLOCK_TICK_TRACE Monitor

rtems_clock_tick
function

0 - Disable

1 - Enable

Table A.10: Monitoring Stub Configuration: Clock Manager.

Parameter Name Description Parameter
Range

TIMELINE_DEFAULT_API_TIMER_CREATE_TRACE Monitor
rtems_timer_create
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TIMER_IDENT_TRACE Monitor

rtems_timer_ident
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TIMER_CANCEL_TRACE Monitor

rtems_timer_cancel
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_TIMER_DELETE_TRACE Monitor

rtems_timer_delete
function

0 - Disable

1 - Enable

Table A.11: Monitoring Stub Configuration: Timer Manager.
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Parameter Name Description Parameter
Range

TIMELINE_DEFAULT_API_SEMAPHORE-
_CREATE_TRACE

Monitor
rtems_semaphore-
_create function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_SEMAPHORE-
_IDENT_TRACE

Monitor
rtems_semaphore-
_ident function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_SEMAPHORE-
_DELETE_TRACE

Monitor
rtems_semaphore-
_delete function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_SEMAPHORE-
_OBTAIN_TRACE

Monitor
rtems_semaphore-
_obtain function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_SEMAPHORE-
_RELEASE_TRACE

Monitor
rtems_semaphore-
_release function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_SEMAPHORE-
_FLUSH_TRACE

Monitor
rtems_semaphore-
_flush function

0 - Disable

1 - Enable

Table A.12: Monitoring Stub Configuration: Semaphore Manager.

A.1.7.13 RTEMS API: User Extension Manager

Table A.18 presents the available User Extension Manager API functions to monitor.

A.2 Compiling an Application

The process to compile an application to be monitored is the same as for any RTEMS application.
The only care to be taken is that the object code should not be deleted after the application is
compiled (as the monitoring tool stub will link with those object files) and the warnings shown in
section A.5.

A.3 Linking the RTEMS Monitoring Stub with the Applica-

tion

After configuring the RTEMS Monitoring tool, it must be linked with the application object files to
produce the final executable. This can be done using the Makefile in the RTEMS Monitoring tool
stub. Table A.19 shows the parameters needed to link the compiled application with the RTEMS
Monitoring tool.
With the Monitoring stub Makefile configured, the command make can be executed in the RTEMS
Monitoring tool stub folder. The executable produced by this step can be found in the o-optimize
folder inside the Monitoring tool stub folder. It can now be loaded into the target platform and
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Parameter Name Description Parameter
Range

TIMELINE_DEFAULT_API_MESSAGE_QUEUE-
_CREATE_TRACE

Monitor
rtems_message-
_queue_create
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_MESSAGE_QUEUE-
_IDENT_TRACE

Monitor
rtems_message-
_queue_ident
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_MESSAGE_QUEUE-
_DELETE_TRACE

Monitor
rtems_message-
_queue_delete
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_MESSAGE_QUEUE-
_SEND_TRACE

Monitor
rtems_message-
_queue_send func-
tion

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_MESSAGE_QUEUE-
_URGENT_TRACE

Monitor
rtems_message-
_queue_urgent
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_MESSAGE_QUEUE-
_BROADCAST_TRACE

Monitor
rtems_message-
_queue_broadcast
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_MESSAGE_QUEUE-
_RECEIVE_TRACE

Monitor
rtems_message-
_queue_receive
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_MESSAGE_QUEUE-
_GET_NUMBER_PENDING_TRACE

Monitor
rtems_message-
_queue_get-
_number_pending
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_MESSAGE_QUEUE-
_FLUSH_TRACE

Monitor
rtems_message-
_queue_flush func-
tion

0 - Disable

1 - Enable

Table A.13: Monitoring Stub Configuration: Queue Manager.
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Parameter Name Description Parameter
Range

TIMELINE_DEFAULT_API_EVENT_SEND_TRACE Monitor
rtems_event_send
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_EVENT_RECEIVE_TRACE Monitor

rtems_event_receive
function

0 - Disable

1 - Enable

Table A.14: Monitoring Stub Configuration: Event Manager.

Parameter Name Description Parameter
Range

TIMELINE_DEFAULT_API_IO_REGISTER-
_DRIVER_TRACE

Monitor
rtems_io_register-
_driver function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_IO_INITIALIZE_TRACE Monitor

rtems_io_initialize
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_IO_OPEN_TRACE Monitor

rtems_io_open
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_IO_CLOSE_TRACE Monitor

rtems_io_close
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_IO_READ_TRACE Monitor

rtems_io_read
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_IO_WRITE_TRACE Monitor

rtems_io_write
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_IO_CONTROL_TRACE Monitor

rtems_io_control
function

0 - Disable

1 - Enable

Table A.15: Monitoring Stub Configuration: I/O Manager.
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Parameter Name Description Parameter
Range

TIMELINE_DEFAULT_API_FATAL_ERROR-
_OCCURRED_TRACE

Monitor
rtems_fatal_error-
_occurred function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_ERROR_GET_LATEST-
_NON_FATAL_BY_OFFSET_TRACE

Monitor
rtems_error_get-
_latest_non_fatal-
_by_offset function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_ERROR_GET_LATEST-
_FATAL_BY_OFFSET_TRACE

Monitor
rtems_error_get-
_latest_fatal-
_by_offset function

0 - Disable

1 - Enable

Table A.16: Monitoring Stub Configuration: Error Manager.

executed. Note that the Monitoring host should be running before the monitored application is
started, so it can capture the execution events.

A.4 Stub Compilation

In order to compile the target application with the Monitoring stub, the user needs to copy
the Stub folder to the target application folder. Assuming that the target application folder is
$RIMP_ROOT/progr1 the command in listing A.8 should be run.

cp −r $RIMP_ROOT/ bu i ld /MON_TOOL/Stub $RIMP_ROOT/progr1 /

Listing A.8: Copying the Monitoring Stub inside the monitored application directory.

The next step is to compile the target program, usually the program has a makefile and the
command make is enough to compile the target application. Before continuing, ensure that the
folder o-optimize contains the application executable. Note that this folder is automatically
created after a successful compilation of the target application. After the program is successfully
compiled it should be linked with the monitoring stub wrappers using the makefile that is supplied
inside the Stub folder. This makefile is similar to one used when compiling RTEMS, with the
modifications presented in section A.3. If the target application is already compiled and the stub
Makefile configured, the commands in listing A.9 are required to compile the application with the
stub.

cd $RIMP_ROOT/Programs/progr1 /Stub

make

Listing A.9: Compiling the monitoring stub, and linking with the monitored application object code.

After the compilation process is completed, the application
$RIMP_ROOT/Programs/progr1/Stub/mtApp.exe (assuming the name chosen for the executable
is mtApp) can be executed in the target host machine. To deploy and execute the application in
the GR712RC-BOARD execute the command in listing A.10, and when inside the GRMON shell
execute the commands in listing A.11.
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Parameter Name Description Parameter
Range

TIMELINE_DEFAULT_API_RATE_MONOTONIC-
_CREATE_TRACE

Monitor rtems_rate-
_monotonic_create
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_RATE_MONOTONIC-
_IDENT_TRACE

Monitor rtems_rate-
_monotonic_ident
function

0 - Disable

1 - Enable
IMELINE_DEFAULT_API_RATE_MONOTONIC-
_CANCEL_TRACE

Monitor rtems_rate-
_monotonic_cancel
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_RATE_MONOTONIC-
_DELETE_TRACE

Monitor rtems_rate-
_monotonic_delete
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_RATE_MONOTONIC-
_PERIOD_TRACE

Monitor rtems_rate-
_monotonic_period
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_RATE_MONOTONIC-
_GET_STATUS_TRACE

Monitor rtems_rate-
_monotonic_get-
_status function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_RATE_MONOTONIC-
_DEADLINE_TRACE

Monitor rtems_rate-
_monotonic_deadline
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_RATE_MONOTONIC-
_GET_DEADLINE_STATE_TRACE

Monitor rtems_rate-
_monotonic_get-
_deadline_state
function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_RATE_MONOTONIC-
_EXECUTION_TIME_TRACE

Monitor rtems_rate-
_monotonic-
_execution_time
function

0 - Disable

1 - Enable

Table A.17: Monitoring Stub Configuration: Rate Monotonic Manager.
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Parameter Name Description Parameter
Range

TIMELINE_DEFAULT_API_EXTENSION-
_CREATE_TRACE

Monitor
rtems_extension-
_create function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_EXTENSION-
_IDENT_TRACE

Monitor
rtems_extension-
_ident function

0 - Disable

1 - Enable
TIMELINE_DEFAULT_API_EXTENSION-
_DELETE_TRACE

Monitor
rtems_extension-
_delete function

0 - Disable

1 - Enable

Table A.18: Monitoring Stub Configuration: User Extension Manager.

Parameter Name Description
SAMPLE The name for the final executable containing the appli-

cation, RTEMS and RTEMS Monitoring stub, as seen in
figure 3.1.

APPLICATION_OBJECT_FILES_PATH The application object files directory. Corresponds to the
directory where the application files are located at. For
example: $RIMP_ROOT/Programs/progr1/o-optimize.

MANAGERS The managers for the RTEMS Monitoring tool (should
be set to all).

LIBS The libraries used. Should be equal to the libraries used
by the application.

RTEMS_MAKEFILE_PATH The RTEMS makefile path directory. Corresponds to the
directory where RTEMS was installed.

TIMELINE_COMPILER_ARGS The functions to be wrapped (monitored).

Table A.19: Monitoring Stub compilation parameters.
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grmon −nb −nswb −abaud 115200 − f t d i −gr712 −u

Listing A.10: Starting GRMON.

load o−opt imize /mtApp . exe

run

Listing A.11: Loading and executing the monitored application linked with the monitoring stub in

GRMON.

The application should now be running, and the output appearing on the screen. To exit the
GRMON shell type quit.

A.5 Warnings

All the logs collected by the target application are sent to the host through SpaceWire. The moni-
toring tool takes care of the SpW driver registration and initialization meaning that the programmer
should not call the grspw_register function in the target application because it will register the
driver for the second time (and erase all the configurations performed by the Monitoring tool).
Taking into account this restriction, it is offered to the programmer the possibility to configure the
major and minor numbers of the SpW driver and core to be used by the Monitoring tool. Note that
the major number attribution is always dependent of the function rtems_io_register_driver.

After the Monitoring tool is initialized, the SpW driver is usable and registered. The target
application can then use the all the SpW cores except for the one set in the configuration file. Also
note that since the monitoring tool only uses 3-bytes to store an event microsecond, the clock tick
cannot be greater than 224 microseconds (∼16 seconds).
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Appendix B

General Purpose Test Results

Listings B.1, B.2, B.3, B.4, B.5 and B.6 show a snippet of the trace data from the test val_10_01010
for the different event types (each listing only shows at most 5 lines of the trace, as the complete
trace would be too long), and listing B.7 shows a snippet of the corresponding test results (only
the first line of each event line is shown, as the full test report has 348659 lines). Since the test
reports are so long, only the test report for the test val_10_01010 is shown here.

3 ,0 ,198928 ,2 ,1430860064 ,167772161 ,1077558752 ,0 ,0 ,NULL,NULL,NULL,1077604780 ,

NULL,NULL,NULL,NULL,NULL,NULL

3 ,0 ,199014 ,2 ,1430860064 ,167772161 ,1077558752 ,1 ,0 ,NULL,NULL,NULL,NULL,NULL,

NULL,NULL,NULL,NULL,0

3 ,0 ,199048 ,2 ,1430860064 ,167772161 ,1077558752 ,0 ,4 ,NULL,NULL,NULL,1077604732 ,

NULL,NULL,NULL,NULL,NULL,NULL

3 ,0 ,199085 ,2 ,1430860064 ,167772161 ,1077558752 ,1 ,4 ,NULL,NULL,NULL,NULL,NULL,

NULL,NULL,NULL,NULL,0

3 ,0 ,199118 ,1 ,1430860064 ,167772161 ,1077558752 ,0 ,0 ,NULL,NULL,NULL

,1073835604 ,0 ,1077604728 ,NULL,NULL,NULL,NULL

Listing B.1: Snippet of the trace data with the first 5 RTEMS API events for the general purpose test

val_10_01010.

6 ,0 ,0 ,1077537496 ,349480 ,1 ,10000 ,50

Listing B.2: Trace data with the configuration events for the general purpose test val_10_01010.

2 ,0 ,201155 ,0 ,1936028781 ,167772163 ,1077559600 ,97 ,NULL

2 ,0 ,202573 ,1 ,1936028781 ,167772163 ,1077559600 ,97 ,NULL

2 ,0 ,202928 ,10 ,1936028781 ,167772163 ,1077559600 ,97 ,NULL

2 ,0 ,203025 ,9 ,1936028781 ,167772163 ,1077559600 ,97 ,NULL

2 ,0 ,203676 ,2 ,1936028781 ,167772163 ,1077559600 ,97 ,NULL

Listing B.3: Snippet of the trace data with the first 5 task events for the general purpose test

val_10_01010.

1 ,0 ,198813 ,0 ,24

1 ,0 ,198876 ,1 ,24

1 ,0 ,200174 ,0 ,24

1 ,0 ,200238 ,1 ,24

1 ,0 ,210150 ,0 ,24

Listing B.4: Snippet of the trace data with the first 5 interrupt events for the general purpose test

val_10_01010.

7 ,0 ,199770 ,56

7 ,1 ,1611590 ,1

7 ,1 ,1612985 ,2
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7 ,1 ,1614361 ,3

7 ,1 ,1620560 ,4

Listing B.5: Snippet of the trace data with the first 5 user events for the general purpose test

val_10_01010.

4 ,0 ,203633 ,1430860064 ,167772161 ,1077558752 ,4112 ,1077600920 ,1077605032

4 ,0 ,203842 ,1936028781 ,167772163 ,1077559600 ,1180 ,1077613704 ,1077621912

4 ,0 ,613555 ,1430860064 ,167772161 ,1077558752 ,4112 ,1077600920 ,1077605032

4 ,0 ,613651 ,1414090053 ,167772186 ,1077569352 ,924 ,1077800968 ,1077805080

4 ,0 ,615276 ,1918989419 ,167772185 ,1077568928 ,1180 ,1077792456 ,1077800664

Listing B.6: Snippet of the trace data with the first 5 stack events for the general purpose test

val_10_01010.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ Test r epo r t f o r t e s t case val_10_01010 ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Test ing Log Line : 2 , 0 , 201155 , 0 , 1936028781 , 167772163 , 1077559600 , 97 ,

NULL

Test s tep 10

Step message : Test ing i f event type code i s c o r r e c t

Expected output : 2

Actual output : 2

Step r e s u l t : Pass

Test s tep 20

Step message : Test ing i f the c l o ck t i c k i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 1 bytes

Step r e s u l t : Pass

Test s tep 30

Step message : Test ing i f the microseconds i s with in the c o r r e c t byte s i z e

Expected output : at most 3 bytes

Actual output : 3 bytes

Step r e s u l t : Pass

Test s tep 40

Step message : Test ing i f the number o f f i e l d s i s c o r r e c t

Expected output : 9

Actual output : 9

Step r e s u l t : Pass

Test s tep 50

Step message : Test ing i f task event type i s c o r r e c t

Expected output : between 0 and 11
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Actual output : 0

Step r e s u l t : Pass

Test s tep 60

Step message : Test ing i f the task name i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 4 bytes

Step r e s u l t : Pass

Test s tep 70

Step message : Test ing i f the task id i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 4 bytes

Step r e s u l t : Pass

Test s tep 80

Step message : Test ing i f the TCB address i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 4 bytes

Step r e s u l t : Pass

Test s tep 90

Step message : Test ing i f the task p r i o r i t y f i t s the t e s t p r i o r i t y window

f i l t e r

Expected output : between 70 and 110

Actual output : 97

Step r e s u l t : Pass

Test s tep 100

Step message : Test ing that the new p r i o r i t y f i e l d i s not de f i ned

Expected output : nu l l

Actual output : nu l l

Step r e s u l t : Pass

( . . . )

Test ing Log Line : 3 , 0 , 198928 , 2 , 1430860064 , 167772161 , 1077558752 , 0 , 0 ,

NULL, NULL, NULL, 1077604780 , NULL, NULL, NULL, NULL, NULL, NULL

Test s tep 104110

Step message : Test ing i f event type code i s c o r r e c t

Expected output : 3

Actual output : 3

Step r e s u l t : Pass

Test s tep 104120
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Step message : Test ing i f the c l o ck t i c k i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 1 bytes

Step r e s u l t : Pass

Test s tep 104130

Step message : Test ing i f the microseconds i s with in the c o r r e c t byte s i z e

Expected output : at most 3 bytes

Actual output : 3 bytes

Step r e s u l t : Pass

Test s tep 104140

Step message : Test ing i f the number o f f i e l d s i s c o r r e c t

Expected output : 19

Actual output : 19

Step r e s u l t : Pass

Test s tep 104150

Step message : Test ing i f the API manager i s v a l i d

Expected output : between 0 and 10

Actual output : 2

Step r e s u l t : Pass

Test s tep 104160

Step message : Test ing i f the API manager func t i on i s v a l i d

Expected output : between 0 and 4

Actual output : 0

Step r e s u l t : Pass

Test s tep 104170

Step message : Test ing that the ob j e c t name f i e l d i s not de f ined

Expected output : nu l l

Actual output : nu l l

Step r e s u l t : Pass

Test s tep 104180

Step message : Test ing that the ob j e c t id f i e l d i s not de f ined

Expected output : nu l l

Actual output : nu l l

Step r e s u l t : Pass

Test s tep 104190

Step message : Test ing that the ob j e c t address f i e l d i s not de f i ned

Expected output : nu l l

Actual output : nu l l

Step r e s u l t : Pass

96



Test s tep 104200

Step message : Test ing that the r e tu rn ing task name i s with in the c o r r e c t

byte s i z e

Expected output : at most 4 bytes

Actual output : 4 bytes

Step r e s u l t : Pass

Test s tep 104210

Step message : Test ing that the r e tu rn ing task id i s with in the c o r r e c t byte

s i z e

Expected output : at most 4 bytes

Actual output : 4 bytes

Step r e s u l t : Pass

Test s tep 104220

Step message : Test ing that the r e tu rn ing TCB address i s with in the c o r r e c t

byte s i z e

Expected output : at most 4 bytes

Actual output : 4 bytes

Step r e s u l t : Pass

Test s tep 104230

Step message : Test ing i f the c a l l type i s va l i d

Expected output : between 0 and 1

Actual output : 0

Step r e s u l t : Pass

Test s tep 104240

Step message : Test ing i f the argument 12 i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 4 bytes

Step r e s u l t : Pass

Test s tep 104250

Step message : Test ing that the unused argument f i e l d 13 i s not de f i ned

Expected output : nu l l

Actual output : nu l l

Step r e s u l t : Pass

Test s tep 104260

Step message : Test ing that the unused argument f i e l d 14 i s not de f i ned

Expected output : nu l l

Actual output : nu l l

Step r e s u l t : Pass

Test s tep 104270

Step message : Test ing that the unused argument f i e l d 15 i s not de f i ned

97



Expected output : nu l l

Actual output : nu l l

Step r e s u l t : Pass

Test s tep 104280

Step message : Test ing that the unused argument f i e l d 16 i s not de f ined

Expected output : nu l l

Actual output : nu l l

Step r e s u l t : Pass

Test s tep 104290

Step message : Test ing that the unused argument f i e l d 17 i s not de f ined

Expected output : nu l l

Actual output : nu l l

Step r e s u l t : Pass

Test s tep 104300

Step message : Test ing that the re turn value i s not de f ined

Expected output : nu l l

Actual output : nu l l

Step r e s u l t : Pass

( . . . )

Test ing Log Line : 7 , 0 , 199770 , 56

Test s tep 416510

Step message : Test ing i f event type code i s c o r r e c t

Expected output : 7

Actual output : 7

Step r e s u l t : Pass

Test s tep 416520

Step message : Test ing i f the c l o ck t i c k i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 1 bytes

Step r e s u l t : Pass

Test s tep 416530

Step message : Test ing i f the microseconds i s with in the c o r r e c t byte s i z e

Expected output : at most 3 bytes

Actual output : 3 bytes

Step r e s u l t : Pass

Test s tep 416540

Step message : Test ing i f the number o f f i e l d s i s c o r r e c t
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Expected output : 4

Actual output : 4

Step r e s u l t : Pass

Test s tep 416550

Step message : Test ing that the user message i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 1 bytes

Step r e s u l t : Pass

( . . . )

Test ing Log Line : 4 , 0 , 203633 , 1430860064 , 167772161 , 1077558752 , 4112 ,

1077600920 , 1077605032

Test s tep 425560

Step message : Test ing i f event type code i s c o r r e c t

Expected output : 4

Actual output : 4

Step r e s u l t : Pass

Test s tep 425570

Step message : Test ing i f the c l o ck t i c k i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 1 bytes

Step r e s u l t : Pass

Test s tep 425580

Step message : Test ing i f the microseconds i s with in the c o r r e c t byte s i z e

Expected output : at most 3 bytes

Actual output : 3 bytes

Step r e s u l t : Pass

Test s tep 425590

Step message : Test ing i f the number o f f i e l d s i s c o r r e c t

Expected output : 9

Actual output : 9

Step r e s u l t : Pass

Test s tep 425600

Step message : Test ing that the task name i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 4 bytes

Step r e s u l t : Pass

Test s tep 425610
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Step message : Test ing that the task id i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 4 bytes

Step r e s u l t : Pass

Test s tep 425620

Step message : Test ing that the TCB address i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 4 bytes

Step r e s u l t : Pass

Test s tep 425630

Step message : Test ing that the s tack usage i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 2 bytes

Step r e s u l t : Pass

Test s tep 425640

Step message : Test ing that the s tack low address i s with in the c o r r e c t byte

s i z e

Expected output : at most 4 bytes

Actual output : 4 bytes

Step r e s u l t : Pass

Test s tep 425650

Step message : Test ing that the s tack high address i s with in the c o r r e c t byte

s i z e

Expected output : at most 4 bytes

Actual output : 4 bytes

Step r e s u l t : Pass

( . . . )

Test ing Log Line : 1 , 0 , 198813 , 0 , 24

Test s tep 447360

Step message : Test ing i f event type code i s c o r r e c t

Expected output : 1

Actual output : 1

Step r e s u l t : Pass

Test s tep 447370

Step message : Test ing i f the c l o ck t i c k i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 1 bytes

Step r e s u l t : Pass
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Test s tep 447380

Step message : Test ing i f the microseconds i s with in the c o r r e c t byte s i z e

Expected output : at most 3 bytes

Actual output : 3 bytes

Step r e s u l t : Pass

Test s tep 447390

Step message : Test ing i f the number o f f i e l d s i s c o r r e c t

Expected output : 5

Actual output : 5

Step r e s u l t : Pass

Test s tep 447400

Step message : Test ing i n t e r r up t event type

Expected output : between 0 and 1

Actual output : 0

Step r e s u l t : Pass

Test s tep 447410

Step message : Test ing i f the i n t e r r up t source i s with in the c o r r e c t byte

s i z e

Expected output : at most 4 bytes

Actual output : 1 bytes

Step r e s u l t : Pass

( . . . )

Test ing Log Line : 6 , 0 , 0 , 1077537496 , 349480 , 1 , 10000 , 50

Test s tep 572520

Step message : Test ing i f event type code i s c o r r e c t

Expected output : 6

Actual output : 6

Step r e s u l t : Pass

Test s tep 572530

Step message : Test ing i f the c l o ck t i c k i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 1 bytes

Step r e s u l t : Pass

Test s tep 572540

Step message : Test ing i f the microseconds i s with in the c o r r e c t byte s i z e

Expected output : at most 3 bytes

Actual output : 1 bytes
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Step r e s u l t : Pass

Test s tep 572550

Step message : Test ing i f the number o f f i e l d s i s c o r r e c t

Expected output : 8

Actual output : 8

Step r e s u l t : Pass

Test s tep 572560

Step message : Test ing that the address i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 4 bytes

Step r e s u l t : Pass

Test s tep 572570

Step message : Test ing that the s i z e i s with in the c o r r e c t byte s i z e

Expected output : at most 4 bytes

Actual output : 3 bytes

Step r e s u l t : Pass

Test s tep 572580

Step message : Test ing that the number o f d r i v e r s i s with in the c o r r e c t byte

s i z e

Expected output : at most 4 bytes

Actual output : 1 bytes

Step r e s u l t : Pass

Test s tep 572590

Step message : Test ing that the microseconds per t i c k i s with in the c o r r e c t

byte s i z e

Expected output : at most 4 bytes

Actual output : 2 bytes

Step r e s u l t : Pass

Test s tep 572600

Step message : Test ing that the t i c k s per t im e s l i c e i s with in the c o r r e c t

byte s i z e

Expected output : at most 4 bytes

Actual output : 1 bytes

Step r e s u l t : Pass

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ Result : Passed ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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Listing B.7: Snippet of the test report for the general purpose test val_10_01010.
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Appendix C

Performance Tests Results

Listing C.1 show the test report for the performance test val_20_01010 and listing C.2 shows the
test report for the performance test val_20_02010.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ Test r epo r t f o r t e s t case val_20_01010 ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Test s c ena r i o d e s c r i p t i o n :

A task a cqu i r e s a semaphore v ia rtems_semaphore_obtain

and waits f o r an event with rtems_event_receive ,

caus ing a context switch and a stack save .

This s c ena r i o i s de f ined to take 10 mi l i s e conds to complete .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ Sta r t i ng t e s t s c ena r i o ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Saving c a l l event to rtems_semaphore_obtain

Average time ( out o f 1000 i t e r a t i o n s ) r equ i r ed to save a c a l l to

rtems_semaphore_obtain : 30 microseconds

Saving return event from rtems_semaphore_obtain

Average time ( out o f 1000 i t e r a t i o n s ) r equ i r ed to save a re turn from

rtems_semaphore_obtain : 28 microseconds

Saving c a l l event to rtems_event_receive

Average time ( out o f 1000 i t e r a t i o n s ) r equ i r ed to save a c a l l to

rtems_event_receive : 28 microseconds

Saving context switch event

Average time ( out o f 1000 i t e r a t i o n s ) r equ i r ed to save a context switch

event : 20 microseconds

Saving stack event

Average time ( out o f 1000 i t e r a t i o n s ) r equ i r ed to save a stack event : 331

microseconds

105



Total time spent sav ing events : 437 microseconds

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ Ending t e s t s c ena r i o ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Step 10

Step message : Test ing i f the event sav ing time has a maximum overhead o f 5%

Expected output : at most 500 microseconds

Actual output : 437 microseconds

Result : Passed

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ Result : Passed ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Listing C.1: Test report for the performance test val_20_01010.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ Test r epo r t f o r t e s t case val_20_02010 ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Test s c ena r i o d e s c r i p t i o n :

A task a cqu i r e s a semaphore v ia rtems_semaphore_obtain

and waits f o r an event with rtems_event_receive ,

caus ing a context switch and a stack save .

This s c ena r i o i s de f in ed to take 10 mi l i s e conds to complete .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ Sta r t i ng t e s t s c ena r i o ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Sending c a l l event to rtems_semaphore_obtain

Average time ( out o f 1000 i t e r a t i o n s ) r equ i r ed to send a c a l l to

rtems_semaphore_obtain : 86 microseconds

Sending return event from rtems_semaphore_obtain
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Average time ( out o f 1000 i t e r a t i o n s ) r equ i r ed to send a return from

rtems_semaphore_obtain : 85 microseconds

Sending c a l l event to rtems_event_receive

Average time ( out o f 1000 i t e r a t i o n s ) r equ i r ed to send a c a l l to

rtems_event_receive : 90 microseconds

Sending context switch event

Average time ( out o f 1000 i t e r a t i o n s ) r equ i r ed to send a context switch

event : 77 microseconds

Sending stack event

Average time ( out o f 1000 i t e r a t i o n s ) r equ i r ed to send a stack event : 95

microseconds

Total time spent sending events : 433 microseconds

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ Ending t e s t s c ena r i o ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Step 10

Step message : Test ing i f the event sending time has a maximum overhead o f 5%

Expected output : at most 500 microseconds

Actual output : 433 microseconds

Result : Passed

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
∗ Result : Passed ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Listing C.2: Test report for the performance test val_20_02010.
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